131 research outputs found

    Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development.

    Get PDF
    Cardiac development arises from two sources of mesoderm progenitors, the first heart field (FHF) and the second (SHF). Mesp1 has been proposed to mark the most primitive multipotent cardiac progenitors common for both heart fields. Here, using clonal analysis of the earliest prospective cardiovascular progenitors in a temporally controlled manner during early gastrulation, we found that Mesp1 progenitors consist of two temporally distinct pools of progenitors restricted to either the FHF or the SHF. FHF progenitors were unipotent, whereas SHF progenitors were either unipotent or bipotent. Microarray and single-cell PCR with reverse transcription analysis of Mesp1 progenitors revealed the existence of molecularly distinct populations of Mesp1 progenitors, consistent with their lineage and regional contribution. Together, these results provide evidence that heart development arises from distinct populations of unipotent and bipotent cardiac progenitors that independently express Mesp1 at different time points during their specification, revealing that the regional segregation and lineage restriction of cardiac progenitors occur very early during gastrulation.This is the author's accepted manuscript and will be under embargo until the 24th of February 2015. The final version is published by NPG in Nature Cell Biology here: http://www.nature.com/ncb/journal/v16/n9/full/ncb3024.html

    Idiopathic pulmonary fibrosis: Best practice in monitoring and managing a relentless fibrotic disease

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease that is, by definition, progressive. Progression of IPF is reflected by a decline in lung function, worsening of dyspnea and exercise capacity, and deterioration in health-related quality of life. In the short term, the course of disease for an individual patient is impossible to predict. A period of relative stability in forced vital capacity (FVC) does not mean that FVC will remain stable in the near future. Frequent monitoring using multiple assessments, not limited to pulmonary function tests, is important to evaluate disease progression in individual patients and ensure that patients are offered appropriate care. Optimal management of IPF requires a multidimensional approach, including both pharmacological therapy to slow decline in lung function and supportive care to preserve patients' quality of life

    Clinical course of suspected familial and sporadic idiopathic pulmonary fibrosis: Data from the PROOF-Next registry.

    Full text link
    peer reviewed[en] BACKGROUND AND OBJECTIVE: Real-life data on suspected familial fibrosis, defined as the occurrence of the disease in a patient younger than 50 and/or having at least one relative affected by pulmonary fibrosis remain scarce. METHODS: The Belgian and Luxembourg IPF registry (PROOF-Next) is a multicentric prospective longitudinal and observational study set in Belgium and Luxembourg. We compared characteristics and clinical course of patients with suspected familial pulmonary fibrosis (FPF) and sporadic IPF. RESULTS: We included 618 patients in the analysis, of whom 76 (12%) fulfilled criteria for FPF. They were significantly younger than sIPF (median age (range) 65 (43-87), vs. 72 (51-98), p = 0.0001). Male gender proportion and smoking status did not differ between groups, but the number of pack-year among current and former smokers was lower in FPF (20 vs. 25, p = 0.02). Besides, 87% of FPF and 76% of sIPF were treated with antifibrotic (p = 0.047). Baseline pulmonary function tests were similar in both groups, as well as median time before progression and transplant-free survival. Finally, genetic testing, performed in a minority, led to the identification of 10 telomerase-related gene variants. CONCLUSION: Although younger and exposed to less tobacco, patients with FPF show an equally aggressive progression as observed in sporadic IPF patients. These results warrant early referral of FPF patients to expert centres for optimal management

    Universality of clone dynamics during tissue development.

    Get PDF
    The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease (1, 2). But what can be learned from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.Wellcome Trus

    Structural Basis of Chemokine Sequestration by CrmD, a Poxvirus-Encoded Tumor Necrosis Factor Receptor

    Get PDF
    Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a β-sandwich fold and utilizes its β-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions

    Pregnancy outcome in thoracic aortic disease data from the Registry of Pregnancy and Cardiac disease

    Get PDF
    Background: Cardiovascular disease is the leading cause of death during pregnancy with thoracic aortic dissection being one of the main causes. Thoracic aortic disease is commonly related to hereditary disorders and congenital heart malformations such as bicuspid aortic valve (BAV). Pregnancy is considered a high risk period in women with underlying aortopathy. Methods: The ESC EORP Registry Of Pregnancy And Cardiac disease (ROPAC) is a prospective global registry that enrolled 5739 women with pre-existing cardiac disease. With this analysis, we aim to study the maternal and fetal outcome of pregnancy in women with thoracic aortic disease. Results: Thoracic aortic disease was reported in 189 women (3.3%). Half of them were patients with Marfan syndrome (MFS), 26% had a BAV, 8% Turner syndrome, 2% vascular Ehlers-Danlos syndrome and 11% had no underlying genetic defect or associated congenital heart defect. Aortic dilatation was reported in 58% of patients and 6% had a history of aortic dissection. Four patients, of whom three were patients with MFS, had an acute aortic dissection (three type A and one type B aortic dissection) without maternal or fetal mortality. No complications occurred in women with a history of aortic dissection. There was no significant difference in median fetal birth weight if treated with a beta-blocker or not (2960 g (2358-3390 g) vs 3270 g (2750-3570 g), p value 0.25). Conclusion: This ancillary analysis provides the largest prospective data review on pregnancy risk for patients with thoracic aortic disease. Overall pregnancy outcomes in women with thoracic aortic disease followed according to current guidelines are good

    ChemR23 Dampens Lung Inflammation and Enhances Anti-viral Immunity in a Mouse Model of Acute Viral Pneumonia

    Get PDF
    Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23−/− mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23−/− mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies
    • …
    corecore