437 research outputs found

    Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    Get PDF
    Abstract Background Hepcidin is a peptide hormone belonging to the defensin family of cationic antimicrobial molecules that has an essential role in systemic iron homeostasis. The peptide is synthesised by hepatocytes and transported in the circulation to target tissues where it regulates the iron export function of the ferrous iron permease, ferroportin. In the brain hepcidin protein has been identified using immuno-histochemistry and mRNA by real-time PCR but not by in situ hybridisation raising the question of whether there is measurable transcription of the hepcidin gene in the central nervous system. Alternatively hepcidin could be transported as a hormone to the brain via the circulation. Results By RT-PCR hepcidin mRNA was present at low level throughout normal rat brain while in situ hybridisation to detect low-abundant mRNA revealed that transcripts were restricted to endothelium of blood vessels and choroid plexus. In contrast, hepcidin protein analysed by immuno-histochemistry was highly expressed in blood vessels, in endothelium and in pericytes. Hepcidin was also present in glial cells and in the olfactory bulb, sub-ventricular zone and dentate gyrus, areas where neurogenesis and synaptic plasticity are maintained throughout adult life. The hepcidin species identified by Western blotting in sub-ventricular zone, cortex and hippocampus migrated as a ~2.8Ā kDa band, identical in size to hepcidin present in normal rat serum suggesting that hepcidin in brain was the full-length biologically active 25 amino acid peptide. Hepcidin co-localised with ferroportin in ependymal cells of the sub-ventricular zone and in the corpus callosum consistent with a regulatory role in iron metabolism at these sites. Conclusions Hepcidin protein was widely expressed in brain parenchyma while levels of hepcidin gene transcription appeared to be below the limits of detection of the in situ hybridisation probes. This disparity suggests that not all hepcidin in the brain is transcribed in situ and may originate in part outside the brain. The properties of hepcidin as a cationic peptide hormone are reflected in the finding of hepcidin in the walls of blood vessels and in pericytes and glia, cells that may be involved in transporting the peptide into brain interstitium

    Gr1+IL-4-producing innate cells are induced in response to Th2 stimuli and suppress Th1-dependent antibody responses

    Get PDF
    Alum is used as a vaccine adjuvant and induces T<sub>h</sub>2 responses and T<sub>h</sub>2-driven antibody isotype production against co-injected antigens. Alum also promotes the appearance in the spleen of Gr1+IL-4+ innate cells that, via IL-4 production, induce MHC II-mediated signaling in B cells. To investigate whether these Gr1+ cells accumulate in the spleen in response to other T<sub>h</sub>2-inducing stimuli and to understand some of their functions, the effects of injection of alum and eggs from the helminth, Schistosoma mansoni, were compared. Like alum, schistosome eggs induced the appearance of Gr1+IL-4+ cells in spleen and promoted MHC II-mediated signaling in B cells. Unlike alum, however, schistosome eggs did not promote CD4 T cell responses against co-injected antigens, suggesting that the effects of alum or schistosome eggs on splenic B cells cannot by themselves explain the T cell adjuvant properties of alum. Accordingly, depletion of IL-4 or Gr1+ cells in alum-injected mice had no effect on the ability of alum to improve expansion of primary CD4 T cells. However, Gr1+ cells and IL-4 played some role in the effects of alum, since depletion of either resulted in antibody responses to antigen that included not only the normal T<sub>h</sub>2-driven isotypes, like IgG1, but also a T<sub>h</sub>1-driven isotype, IgG2c. These data suggest that alum affects the immune response in at least two ways: one, independent of Gr1+ cells and IL-4, that promotes CD4 T cell proliferation and another, via Gr1+IL-4+ cells, that participates in the polarization of the response

    Catatonia: demographic, clinical and laboratory associations

    Get PDF
    Background: Catatonia, a severe neuropsychiatric syndrome, has few studies of sufficient scale to clarify its epidemiology or pathophysiology. We aimed to characterise demographic associations, peripheral inflammatory markers and outcome of catatonia. / Methods: Electronic healthcare records were searched for validated clinical diagnoses of catatonia. In a caseā€“control study, demographics and inflammatory markers were compared in psychiatric inpatients with and without catatonia. In a cohort study, the two groups were compared in terms of their duration of admission and mortality. / Results: We identified 1456 patients with catatonia (of whom 25.1% had two or more episodes) and 24 956 psychiatric inpatients without catatonia. Incidence was 10.6 episodes of catatonia per 100 000 person-years. Patients with and without catatonia were similar in sex, younger and more likely to be of Black ethnicity. Serum iron was reduced in patients with catatonia [11.6 v. 14.2 Ī¼mol/L, odds ratio (OR) 0.65 (95% confidence interval (CI) 0.45ā€“0.95), p = 0.03] and creatine kinase was raised [2545 v. 459 IU/L, OR 1.53 (95% CI 1.29ā€“1.81), p < 0.001], but there was no difference in C-reactive protein or white cell count. N-Methyl-D-aspartate receptor antibodies were significantly associated with catatonia, but there were small numbers of positive results. Duration of hospitalisation was greater in the catatonia group (median: 43 v. 25 days), but there was no difference in mortality after adjustment. / Conclusions: In the largest clinical study of catatonia, we found catatonia occurred in approximately 1 per 10 000 person-years. Evidence for a proinflammatory state was mixed. Catatonia was associated with prolonged inpatient admission but not with increased mortality

    Efficacy of an Acoustic Hailing Device as an Avian Dispersal Tool

    Get PDF
    Bird strikes are a major safety and financial concern for modern aviation. Audible stimuli are common bird dispersal techniques, but their effectiveness is limited by the saliency and relevance of the stimulus. Furthermore, high ambient sound levels present at airfields might require that effective audible stimuli rely more on total volume (i.e., exceeding physiological tolerances) than ecological relevance. Acoustic hailing devices (AHD) are capable of sound output with a narrow beamwidth and at volumes high enough to cause physical discomfort at long distances. We tested the effectiveness of anAHD as a dispersal tool on freeranging birds recognized as hazardous to aviation safety at the Savannah River Site and Phinizy Swamp Nature Park in South Carolina and Georgia, USA, respectively, between October 2013 and March 2015. Our study design included experimental trials with timed-interval counts of birds directly before and after AHD treatment. For most species, counts of birds associated with treatment periods (use of AHD) and control periods (no use of AHD) occurred on different days. Sound treatments yielded variable success at dispersing birds. Specifically, AHD treatment was effective for dispersing vultures (Coragyps atratus and Cathartes aura) and gulls (Laridae), but ineffective for dispersing blackbirds (Icteridae), diving ducks (Aythya spp., Bucephala spp., Oxyura spp.), and coots (Fulica americana). Trials were conducted in a relatively quiet environment with birds that were unhabituated to excessive noise; thus, we cannot unequivocally recommend an AHD as a universally effective avian dispersing tool. However, future research should consider AHD testing integrated with other methods, as well as investigation of treatments that might be salient to specific target species
    • ā€¦
    corecore