223 research outputs found

    Figurative Framing in Political Discourse

    Get PDF

    Role of the P2Y(13) Receptor in the Differentiation of Bone Marrow Stromal Cells into Osteoblasts and Adipocytes

    Get PDF
    Accumulating evidence indicates that extracellular nucleotides, signaling through purinergic receptors, play a significant role in bone remodeling. Mesenchymal stem cells (MSCs) express functional P2Y receptors whose expression level is regulated during osteoblast or adipocyte differentiation. P2Y13-deficient mice were previously shown to exhibit a decreased bone turnover associated with a reduction in the number of both osteoblasts and osteoclasts on the bone surfaces. We therefore examined whether P2Y13R activation was involved in the osteogenic differentiation of MSC. Our study demonstrated that ADP stimulation of P2Y13R+/+ (but not P2Y13R-/-) adherent bone marrow stromal cells (BMSCs) increased significantly the formation of alkaline phosphatase-colony-forming units (CFU-ALP) as well as the expression of osteoblastic markers (osterix, alkaline phosphatase, and collagen I) involved in the maturation of preosteoblasts into osteoblasts. The number of CFU-ALP obtained from P2Y13R-/- BMSC and the level of osteoblastic gene expression after osteogenic stimulation were strongly reduced compared to those obtained in wild-type cell cultures. In contrast, when P2Y13R-/- BMSCs were incubated in an adipogenic medium, the number of adipocytes generated and the level of adipogenic gene expression (PPARγ2 and Adipsin) were higher than those obtained in P2Y13R+/+ MSC. Interestingly, we observed a significant increase of the number of bone marrow adipocytes in tibia of P2Y13R-/- mice. In conclusion, our findings indicate that the P2Y13R plays an important role in the balance of osteoblast and adipocyte terminal differentiation of bone marrow progenitors. Therefore, the P2Y13 receptor can be considered as a new pharmacological target for the treatment of bone diseases like osteoporosis

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    P2Y receptors in GtoPdb v.2023.1

    Get PDF
    P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5, 189]) are activated by the endogenous ligands ATP, ADP, UTP, UDP, UDP-glucose and adenosine. The eight mammalian P2Y receptors are activated by distinct nucleotides: P2Y1, P2Y11, P2Y12 and P2Y13 are activated by adenosine-nucleotides; P2Y2, P2Y4 can be activated by both adenosine and uridine nucleotides, with some species-specific differences; P2Y6 is mainly activated by UDP; P2Y14 is preferentially activated by sugar-uracil nucleotides. The missing numbers in the receptor nomenclature refer either to non-mammalian orthologs or receptors having some sequence homology to P2Y receptors but for which there is no functional evidence of responsiveness to nucleotides [380]. Based on their G protein coupling P2Y receptors can be divided into two subfamilies: P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 receptors couple via Gq proteins to stimulate phospholipase C followed by increases in inositol phosphates and mobilization of Ca2+ from intracellular stores. P2Y11 receptors couple in addition to Gs proteins followed by increased adenylate cyclase activity. In contrast, P2Y12, P2Y13, and P2Y14 receptors signal primarily through activation of Gi proteins and inhibition of adenylate cyclase activity or control of ion channel activity [380]. Clinically used drugs acting on these receptors include the dinucleoside polyphosphate diquafosol, agonist of the P2Y2 receptor subtype, approved in Japan and South Korea for the management of dry eye disease [238], and the P2Y12 receptor antagonists prasugrel, ticagrelor and cangrelor, all approved as antiplatelet drugs [52, 320]

    P2Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5]) are activated by the endogenous ligands ATP, ADP, uridine triphosphate, uridine diphosphate and UDP-glucose. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established and so it might be appropriate to use wording such as 'uridine triphosphate-preferring (or ATP-, etc.) P2Y receptor' or 'P2Y1-like', etc., until further, as yet undefined, corroborative criteria can be applied [46, 109, 187, 375, 388].Clinically used drugs acting on these receptors include the dinucleoside polyphosphate diquafosol, agonist of the P2Y2 receptor subtype, approved in Japan for the management of dry eye disease [236], and the P2Y12 receptor antagonists prasugrel, ticagrelor and cangrelor, all approved as antiplatelet drugs [52, 316]

    P2Y receptors in GtoPdb v.2021.3

    Get PDF
    P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5, 192]) are activated by the endogenous ligands ATP, ADP, uridine triphosphate, uridine diphosphate and UDP-glucose. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established and so it might be appropriate to use wording such as 'uridine triphosphate-preferring (or ATP-, etc.) P2Y receptor' or 'P2Y1-like', etc., until further, as yet undefined, corroborative criteria can be applied [47, 110, 190, 383, 396]. Clinically used drugs acting on these receptors include the dinucleoside polyphosphate diquafosol, agonist of the P2Y2 receptor subtype, approved in Japan for the management of dry eye disease [241], and the P2Y12 receptor antagonists prasugrel, ticagrelor and cangrelor, all approved as antiplatelet drugs [53, 323]

    Molecular mechanisms of extracellular adenine nucleotides-mediated inhibition of human Cd4+ T lymphocytes activation

    Get PDF
    We have previously reported that ATPγS, a slowly hydrolyzed analog of ATP, inhibits the activation of human CD4+ T lymphocytes by anti-CD3 and anti-CD28 mAb. In this report we have partially characterized the signaling mechanisms involved in this immunosuppressive effect. ATPγS had no inhibitory effect on CD4+ T-cell activation induced by PMA and anti-CD28, indicating that it acts proximally to the TCR. It had no effect on the calcium rise induced by CD3/CD28 stimulation, but inhibited the phosphorylation of three kinases, ERK2, p38 MAPK and PKB, that play a key role in the activation of T cells. The receptor involved in these actions remains unidentified
    corecore