5,527 research outputs found
Application of remote sensing techniques for identification of irrigated crop lands in Arizona
Satellite imagery was used in a project developed to demonstrate remote sensing methods of determining irrigated acreage in Arizona. The Maricopa water district, west of Phoenix, was chosen as the test area. Band rationing and unsupervised categorization were used to perform the inventory. For both techniques the irrigation district boundaries and section lines were digitized and calculated and displayed by section. Both estimation techniques were quite accurate in estimating irrigated acreage in the 1979 growing season
Impact of radiation dose on nuclear shuttle configuration
The impact of nuclear radiation (from the NERVA propulsion system) on the selection of a reference configuration for each of two classes of the reusable nuclear shuttle is considered. One class was characterized by a single propellant tank, the shape of whose bottom was found to have a pronounced effect on crew radiation levels and associated shield weight requirements. A trade study of shield weight versus structural weight indicated that the minimum-weight configuration for this class had a tank bottom in the shape of a frustum of a 10 deg-half-angle cone. A hybrid version of this configuration was found to affect crew radiation levels in substantially the same manner. The other class of RNS consisted of a propulsion module and eight propellant modules. Radiation analyses of various module arrangements led to a design configuration with no external shield requirements
A unified wavelet-based modelling framework for non-linear system identification: the WANARX model structure
A new unified modelling framework based on the superposition of additive submodels, functional components, and
wavelet decompositions is proposed for non-linear system identification. A non-linear model, which is often represented
using a multivariate non-linear function, is initially decomposed into a number of functional components via the wellknown
analysis of variance (ANOVA) expression, which can be viewed as a special form of the NARX (non-linear
autoregressive with exogenous inputs) model for representing dynamic input–output systems. By expanding each functional
component using wavelet decompositions including the regular lattice frame decomposition, wavelet series and
multiresolution wavelet decompositions, the multivariate non-linear model can then be converted into a linear-in-theparameters
problem, which can be solved using least-squares type methods. An efficient model structure determination
approach based upon a forward orthogonal least squares (OLS) algorithm, which involves a stepwise orthogonalization
of the regressors and a forward selection of the relevant model terms based on the error reduction ratio (ERR), is
employed to solve the linear-in-the-parameters problem in the present study. The new modelling structure is referred to
as a wavelet-based ANOVA decomposition of the NARX model or simply WANARX model, and can be applied to
represent high-order and high dimensional non-linear systems
Constructing an overall dynamical model for a system with changing design parameter properties
This study considers the identification problem for a class of non-linear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient Common Model Structure Selection (CMSS) algorithm, called the Extended Forward Orthogonal Regression (EFOR) algorithm, is proposed to select such a common model structure. Two examples are presented to illustrate the application and the effectiveness of the new identification approach
Emergency escape system uses self-braking mechanism on fixed cable
Slide-wire system with a twist level slide device incorporates automatic descent and braking for the safe and rapid evacuation of personnel from tall structures. This device is used on any tall structure that might require emergency evacuation. It is also used to transfer materials and equipment
Real-time diffuse optical tomography using reduced-order light propagation models based on a priori anatomical and functional information
This paper proposes a new fast 3D image reconstruction
algorithm for Diffuse Optical Tomography using reduced
order polynomial mappings from the space of optical
tissue parameters into the space of flux measurements at
the detector locations. The polynomial mappings are
constructed through an iterative estimation process
involving structure detection, parameter estimation and
cross-validation using data generated by simulating a
diffusion approximation of the radiative transfer equation
incorporating a priori anatomical and functional
information provided by MR scans and prior psychological
evidence. Numerical simulation studies demonstrate that
reconstructed images are remarkably similar in quality as
those obtained using the standard approach, but obtained at
a fraction of the time
- …