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Abstract: A new unified modelling framework based on thgperposition of additive submodels, functional
components, and wavelet decompositigmproposed for nonlinear system ideiotifion. A nonlinear model, which

is often represented using a multivariate nonlinear functoimitially decomposed into a number of functional
components via the well knovaralysisof variance (ANOVA) expression, which can biewed as a sial form of

the NARX(Nonlinear AutoRegressive with eXogenous inputs) model for representing dynamic input-output systems.
By expanding each functional component using wavelecompositions including the regular lattice frame
decomposition, wavelet series and multiresolution waddebmpositions, the multivariate nonlinear model can then
be converted into a linear-in-the-pareters problem, which can be solvesing least-squares type methods. An
efficient model structure determination approach based upon a forward odhdegst squares (OLS) algorithm,
which involves a stepwise orthogonalipetiof the regressors and a forwardeston of the relevant model terms
based on the error reduction ratio (ERR), is employed to solve the linear-in-the-parameters problem in the present
study. The new modelling structure is referred to ¥&aelet-based NOVA decomposition of the NARX model or
simply WANARX model, and can bepplied to represent high-order ahidh dimensional nonlinear systems.

Keywords: Nonlinear system identification; NARX and NMAX models; waveletsprthogonal least squares

1. Introduction

The main task in mathematical modelling is to cargta mapping, which connects the inputs and outputs and
reflects the relationship between these with an acdeptdruracy. In experimental data based modelling,
known as system identification, the key problem i€dastruct a suitable model, which involves the smallest
number of input variables (lagged inputs and lagged outputs for dynamical systenikp aimplest model
structure containing the smallest number of adjustable parameters. For high dimensional systems, however,
parsimony and accuracy are difficult to achieve simultagsigoliherefore, trade-offs between model parsimony,
accuracy, and validity have to be considered.

A key problem in modelling high dimensional nonlineastsyns is to develop efficient model construction
procedures that overcome the cuo$alimensionality. One approach for representing continuous functions of
several variables is to describe multivariate functiass superposition of a number of continuous functions
with fewer variables. This ithe essence of Hilbert's ®roblem, which was resolved by Kolmogorov where it
was concluded that every continuous function of several variables can be represented by the superposition of
functions with only two variables (see, Gorban 1998 and the references therein). The problem of representing

continuous functions of several variables by continuous functions of a single variablechbeeaal solved and
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this can be expressed using Kolmogorov's theorem which states that every continuous functiraniaifles

defined in the standarddimensional cube can be represented in the following form

2n+1 n 2n+1
FO % %) = D08, QM (%)) = D gq (hd (%) + hi? (%) +--+ h{” () 1)
a=1 p=1 o=1

whereg, (-) are some continuous functions which depend on the fundtiand hép) (-) are some continuous

functions which are independent the functibn This theorem guarantees that every continuous function can be

approximated by the operations of addition, multiplication, and superposition of a number of continuous single
variable functions with arbitrary ac@ay. This theorem, however, does paivide a solution for how to choose
the additive functional componeniherefore it is not easily applicighin real system modelling.

Several applicable approaches have been proposesdlive the idea of representing multivariate functions
using a superposition of a number of functions with fevegiables. The projection pursuit regression algorithm
(Friedman 1981), radial basis function networks (Ceteal. 1990, 1992), and multi-layer perceptron (MPL)
architecture (Haykin 1994) are among these representdbomsultivariate functions. The existing strategies
that attempt to approximate general functions in ldighensions are based on additive functional submodels
including the polynomial NARMAX Nonlinear AutoRegressive Moving Average with eXogenous inputs)
representation introduced by Billingscaheontaritis (1982, 1985), the multivariate adaptive regression splines
(MARS) introduced by Friedman(1991), and the adaptive spline modelling of observalidaalASMOD)
introduced by Kavli (1993). The functional components can be arbitrary functions with degeenents and
with global or local properties. Kernel functions, splines, polynomials and other basisrgrezn all be chosen
as functional components (Hastie and Tibshirani 1990).

A multivariate nonlinear function can often be deposed into a number of functional components via the
well known functionabhnalysisof variance (ANOVA) expansions (Friedman 1991, Chen 1993)

n
fOX X)) =fo+ 2 Fi()+ X F060x)+ 2 Fe (X, X, %)+
i=1 I<i<j<n I<i<j<k<n

+ X fi XX X ) et F i (% X, %) 2

1<y < -<ip<n
where the first functional componed, is a constant to indicate the intrinsic varying treiig; f;;,---, are
univariate, bivariate, etc., functional components. The univariate functional compd‘mén@ represent the
independent contribution to the system output that arises from the action ith thariable X; alone; the
bivariate functional componentfgj (Xi ,Xj) represent the interacting contribution to the system output from the

input variablesx, and X;, etc. As that will be seen later, the AN@\éxpansion (2) can be viewed as a special

form of the NARX (Nbonlinear AutoRegressive with eXogenous inputs) model for dynamic input and output

systems.

Among almost all the functions used for the purpose of approximation, fewhhdveuch an impact and
spurred so much interest aavelets. Wavelet decompositions outperform many other approximation schemes
and offer a flexible capability for approximating arbiyrdunctions. Wavelet basis functions have the property

of localization in both time and frequency. Due to thiserent property, wavelet approximations provide the



foundation for representing arbitrary functions economically, using just a small numbesisffunctions.
Wavelet algorithms (Coca and Billings 2001) process dathfferent scales or relsions, which make wavelet
representations more adaptive compared with othes li@sctions. Therefore, wavelet decompositions can be

used to represent each functiboamponent in the model (2).

In this paper, a new model structure whichmbines wavelets and the additive functional ANOVA
decomposition of the NARX model, called téavelet-basedANOVA decomposition of th&lARX model or
simply WANARYX, is introduced as a basis for nonlinear system identification. The wavelet decompositions,
which have excellent approximation properties, are used to express each functional component. By expanding
each functional component into wavelet decompositions, the multivariate nonlinear function can then be
converted into a linear-in-the-parameters problem, which can be solved using least-squares type @f Anethod
stepwise forward least squares (OLS) algorithm, along with an error reduction ratio (ERR) indexdssesesxt t
the significant model terms from a large number of candidate terms. Emphasis is concentrated on wavelet series

and multiresolutoin decompositions in this study frompint of view of practical data analysis.

The rest of the paper is organised as follows. The paper starts with a description of the well-known NARMAX
model in Section 2, and the additive functional ANOVA decomposition of the NARX model is introduced. In
Section 3, some introductory material on wavelet decompositions including wavelet frame decompositions,
wavelet series and wavelet multiresolution decompmusiti which establish the foundation for the WANARX
model, are described. Sectiorsldows how to expand a WANARX mddgsing the wavelet decompositions.
Section 5 addresses system variable selection and teodebtletection problems. In Section 6, some practical
issues associated with the implementation of WW&NARX model are discussed. Two examples, one a
simulated system and one based on real data relatihg toagnetosphere, are given in Section 7 to demonstrate

the effectiveness and applicability of the WANARX modelling structure. Conclusions are given in Section 8.

2. Nonlinear input-output representations

In the past few decades, system identification and analysis methods for nonlinear sggtebexh extensively
studied with many applications in approximation, prediction and control. Several nonlinear moddiedrave
proposed in the literature including the NARMAX model representation which was initially proposed by Billings
and Leontaritis (Billings and Leontaritis 1982, Leoittarand Billings 1985). The NARMAX model (Pearson
1999) takes the form of the following nonlinear difference equation:

y(t) = f(y(t-D,--, y(t-ny)ut-1,---,ult—n,), et -1, et —n)) + et) (3)
wheref is an unknown nonlinear mapping(t) and y(t) are the sampled input and output sequences,

n, and n, are the maximum input and output lags, respectively. The noise va@dhlevith maximum lagn,,

is immeasurable but is assumed to be bounded and alated with the inputs. The model (3) relates the inputs

and outputs and takes into account the combinagidects of measurement noise, modelling errors and

unmeasured disturbances represented by the noise v&igale

The NARX model is a special case of the NARMAX model and is described as



y(@t) = f(y(t-1, -, y(t-n,)ut -1, -,ut-n,)) +et) 4
One of the popular representations for the NARMAX model (3) is polynomial models, since any continuous

function can be arbitrarily well approximated by aymoimial model (Schumaker 1981). Taking the case of

SISO systems as an example and expanding model (3) by defining the fufi¢f)oto be a polynomial of

degree/ gives the representation

YO =G+ 31, 0%, ) +3 D 1, (%, 0%, () +-

=1 i,=i

+ 2 2 s, (%, 0., (0,4, % (0) +€(t) (5)
=1 i,=i,
whered,; _; are parameterd) =N, +n, + N, and
fa (6 O, ® % ) =6, []% ©,1sm=</ )
k=1
y(t—k) 1<k<n,
X () =qult-(k-n,))) n,+1<k<n +n, (7
et—(k-n,-n,))  n,+n,+1<k<n +n, +n,

The degree of a multivariate polynomial is defined asitleest order among the terms, for example, the degree
of the polynomialn(X,, X,, X;) = &, X, +8,X,X; +8,X X, X2 is { = 2+1+2=5. Similarly, a NARMAX model
with polynomial degre€¢’ means that the order of each term in the model is not higher’than

As a general and natural representation for a wide class of linear and nonlinear systems, modatig$) incl
as special cases, several model types, including/tierra and Wiener representations, time-invariant and
time-varying AR(X), NARX and ARMA(X structures, output-affine and rational models, and the bilinear model

(Pearson 1995). The ANOVA expansions (2) can alsadweed as a special case of the NARMAX model while

representing dynamic input and output systems.

Now, consider the NARX model (4) and assume that the nonlinear mappingthe model (4) can be

decomposed into a number of functional components as the ANOVA expansion (2), then the NARX model (4)

can be expressed as

y(©) = £ (X (0), %, (1), %, (1)) +€(t)

= fo + FL(X(1)) + B (X(1)) + - + B (X(1)) + - + F, (X(1)) + €(t) ®)
where X(t) =[x, (t), X, (t),--+, X, ()]  and
{y(t—k), 1<k<n,
X, (t) = (8a)
ut-k+ny), n,+1<k<n=n +n,

F(X(0) = 3,05 () @)



0 = D f, (x (1).%, (1) (&)

FaX) = 3y, (6, 0.%, 0%, @), 2<m<n, (@)
Fo (O0) = Fia 0 0,5 0,7+, (1) (@)

This can be referred to as the ANOVA decomposition of the NARX model. Although the ANOVA expansion (2)

or the NARX model (8) involves up t2" different functional components, experience shows that a truncated

representation containing the components up to the bivariate functional terms is oftemsufficie

VO = o+ 32 o0, )+ D% D £100¢, 0%, (0) + ) ®

p=lg=p+1
This can often provide a satisfactory descriptiory¢f) for many high dimensional problems providing that the

input variables are properly selecta@the presence of only low order functional components does not necessarily
imply that the high order variable interactions are ngnificant, nor does it mean the nature of the nonlinearity
of the system is less severe. An exhaustive search for all the possible submodel structures of (2) is demanding

and can be prohibitive because of the curse-of-dimensionality. A truncated representation is advantageous and
practical if the higher order terms canigeored. In practice, the constant tefmcan often be omitted since it
can be combined into other functional components.

In practice, many types of functions, such asédumctions, splines, polynomials and other basis functions
can be chosen to express the functional components in model (8). In the present study, however, wavelet
decompositions, which are discussed in the next section, will be chosen to describe the functional components in

the additive models (8) and (9), aids will be referred to as th&avelet-based thANOVA decomposition of
the NARX model or simply the WANARX model.

3. Wavelet decompositions

Wavelet analysis (Chui 1992, Daubechies 1992) is based on a wavelet prototype functibriheatialysing
wavelet, mother wavelet, or simplywavelet. Temporal analysis is performed using a contracted, high-frequency
version of the same function. Because the signal or funtdide studied can be represented in terms of wavelet

decompositions, data operations can also be performed using the corresponding wavelet coefficients.

3.1 Wavelet frame decomposition
Let @ be ad-dimensional wavelet function arfde L?(R?) . Assume that there exists a denumerable family

derived fromp
Q= {q’(aj b) P, 5 (%) = (Q)) 2 p(A (x=b, ))} (10)

T d . . T +d . o
wherebj=[bj1,bj2,-~-,bjd] eR |satranslat|onvectoaj:[ajl,aj2,~--,ajd] e R™ is a dilation

vector,Q; =det(A;) and A, = diag[aj‘ll,aj‘%,---,aj‘j].



Under the condition thapp generates a frame (Chui 1992), it is assured that any funétieri_z(Rd) can

be expressed as
f(x) = J_ZFC,- Q )1/2(”(Aj (X=by)) = ]_ZFW]' @(A (x-b;)) (11)

whereI" is an index set which might be finite or infinite; and W; are the decomposition coefficients or

weights. Eq. (11) is called theavelet frame decomposition, which can be approximated by a neural network

structure and it is therefore often referred to aswel et network (Zhang 1992).

3.2 Wavelet series
In practical applications the CWT (11) is often discretised in both the scaling and dilation parameters for
computational efficiency. Based on this discretization, wavelet decompositions can be obtained to provide an

alternative basis function representation. Take the univariate wavelet as an example. The most popular approach
to discetise the CWT is to restrict the dilatiand translation parameters to a dyadic lattic@as2 | and

b=k2 ' with j,k e Z. Other non-dyadic ways of discretization are also available.

Under some conditions (Chui 1992, Daubechies 1992), an arbitrary fufﬁc&'ohz(R) can be expressed as
f(x)= z zcj,k(/)j,k (X) (12)
j=—00 k=—o0
where @, (X) = 2129 (2' x-K) andj,k € Z . Eq. (12) is called savelet series. In comparison with the

CWT (11), the wavelet series is more computationally efficient. But this is obtained at the expense of increased

restrictions on the choice of the basic waveletThe wavelet series (12) can be extendatidonensional case

by takingtensor product of one-dimensional wavelets or by choosing the radial types of wavelets.

3.3 Mulitresolutionwavelet decompositions
It is known that for solving identification problems basedthe regression representation it is useful to have a

basis of orthogonal (semi-orthogonal or bi-orthogonal) functions whose support can be madsl @s sm

required and which provides a universal approximation to lazrﬁR) function with arbitrary desired accuracy.

One of the original objectives of wavelet theargs to construct orthogonal (semi-orthogonal) basié R).
Assume that the wavelpt and the corresponding scaling functiprconstitute an orthogonal wavelet system,

then any functiorf e LZ(R) can be expressed as the followmgltiresolution wavel et decomposition

f(X) =Zaj0,k¢j0,k(x)+ Zzlgj,k¢j,k(x) (13)
k izjo k
whereo:jO'k and ﬂj’k are the wavelet coefficientsj,O is an arbitrary integer representing the lowest resolution

or scaling level. Notice that from waveleheory (Chui 1992, Daubechies 1992) jg — —o0 , the

approximation representation (13) becomes the waveletmmsition (12). In addition, from the property of the



multiresolution decomposition (13), any functidne LZ(R) can be arbitrarily closely approximated using the

basic scaling functiong; \ (X) = 2172 4(2) x—k) by choosing the resolution scgléo be sufficiently large.

That is, there exists a sufficiently large integesuch that
f(x) = kz C Py (X) (14)

This means that in wavelet series representation, thelgtebases can be replaced by scaling functions with a
large resolution scale.

Using the concept dénsor products, the multiresolution decompositions (13) and (14) can be immediately
generalised to the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by
taking thetensor product of the one-dimensional scaling and wavelet functions (Mallat 1989) and this will be
discussed later.

4. Expandingthe WANARX model using wavelet decompositions

The wavelet decompositions including the wavelet frame decomposition, wavelet series and wavelet
multiresolution decompositions discussed in Sectionn3beaadapted to express each functional component in
the NARX model (8). Notice that it is impossible in practice to count infinite frame terms or wavelet bases in a
wavelet decomposition. Therefore, the infinite deposgitions are always truncated at appropriate dilations
(resolutions) and translations.

4.1 Expanding the functional compait®using wavelet frame decomposition

Each functional component in the NARX model (8) can be expressed using the truncated wavelet frame
decomposition (11), take the functional componént ; (X (t), X, (t),---,X_(t)) as an example, this can

be expanded as

|1|2 i (X (t)1 iy (t)! T Xim (t))
_ 3t w2 i) g iz m) ALz i) gy _ p(id2im) ) (15)

i=1
where

X ) =[xt (0,50 @), O]
q('lZ im) _ [b('12 im) b('12 Im) q('lZ 'm)]
a1_(i1i2~~~im) _ [ai(i1i2~~im) ’ ai(i1i2--~im) - (I12 'm)]
A(i].iZ“‘im) dlag[(a('lz Im))— (a1(|12 Im))— (al('12 'm)) 1]'
|i1i2~-im is the number of wavelets in the wavelet libraommposed of all the wavelets under consideration and

W(|1|2~~-|m) is the weight for the decompositiom(iﬂz"'i"‘) indicates that different types of wavelets can be



employed simultaneously for approximating different functional components. This amgbte the wavelet

decomposition to be more flexible than traditional wavelet networks.

Inserting (15) into (8), yields

~ n i ) ) ) _ _
)7('[) = fo + _Z zl ngll)w(ll) (Aéll) (X('l) (t) - b|£|1) )

|1=]k=

liip . . iy . iy
+ Y ¥ nglllz)(o(lllz) (A1£'1'2) (X(lllz) (t) - b|£|1|2))) e
I<ig<ig<n k=1

1200 420y a2 12-n) ¢y, (02 (2
+ 2 wE A (D () b (10)
-1
This will be referred to as super wavelet network. The values of the decomposition paramel\gﬁ}"isz"'i"‘),

blﬁiliz"'i'“) and aSliz'"im) can be obtained by minimizing a criterion function, say

min V = %iez t) = 1i[y('[) - J(0)1° (7
t=1 2t:l

wherey(t) is the measurement at tiheandT is the data length. To minimise the functiéngradient descent

type methods are required and thus the gradients of unknown parameters shoutdlaeeddlrst. Once the
gradients have been obtained, Gauss-Newton type optimisation methods including steepest deoehasticl st

gradient methods can be used to obtain the unknown parameters.

Note that the wavelets used in the adaptive wavelet decomposition (wavelet networks) degc(ib@d

should be explicitly expressible and differentiable. This restricts the choice of basic wavelehfunsed for
wavelet networks to a special class. The Morlet way{ie} = exp(j oy X — ||><||2 /2), Gaussian wavelet(X)
= XX, Xy exp(—||x||2 /2) , and Marr (Mexican hat) wavelep(X) = (d —xlxz---xd)exp(—”x”2 /2) are
among the examples which are often used in wavelet networks. The siMhhieoé denotes the Euclidian norm
inL*(RY).

Notice that a radial wavelet is often considered and thdyfd@@) is often restricteth a regular grid, that is,

the translation and dilation parametaﬁand bj in (10) are designed to form a double indexed regular lattice
{a,,b)=(a"' kBa): jeZ keZ®} (18)

where the scalar parametersand £ are the discretization step with typical valugs=2 and f=1.

Expanding each functional component in (8) using a radial wavelet frame
Qr ={0k 0 x() =a?p(a’x-kp),j e Z,ke 2} (19)

The NARX structure (8) can then be converted into a linear-in-the-parameters problem, which can be solved

using regression analysis techniques, and this will be referred teupsravavelet network on fixed grid, or,
super fixed grid wavelet network. If only the last functional componerft,, (X, (t), X, (t), -+, X, (t)) in (8) is

considered and expanded using a radial wavelet frame with the form of (19), then this decompasitbe



treated as a standard linear regresgimblem with the dilated and trangdtwavelets as the regressors. This
will be referred to as éixed grid wavelet network, which is a special case of tlsaper fixed grid wavelet
networks considered here.

4.2 Expanding the functional components using wavelet series
Consider the functional componerfi, . (X (t),x; (t),~--,% (t)) in the NARX expansion (8). This

functional component can be approximated using the truncated wavelet series (12) or (14)
iy, (X, (0., (), % (1))

I iqipeei j j j
=> 3 c§1k2k2m> B, (2 % () -k 2" % (t) =Ky, 2 % (1) —Kp) (20)

j=im kikp

wherek =[Kkj,K, -,k ]" € Z™is anm-dimensional indexB,,(X) is anm-dimensional wavelet or scaling

function and can be decomposed as the direct prodatbag-dimensional functions

B, () = B, (% X ) = [ [w(X) @)

where /() is a scalar wavelet or scaling function. Now (20) can be expressed as

4, (6 @)%, (1), % (t))— ., e Hl//(2’ k) (22)

i=im kika,-

Inserting (22) into (8), yields
y(@) = £ 0, %, (1), %, (©) = o + FL(X(0) + Fp (x(0) +++ + F, (x(1)) + (t) (23)

where f, is a constant and

ROO) = 2 3 Zellly @ x, (1) -k,) (232)
—1J 11
W) = ¥ ¥y CiR v (21 %, () — Ky (2 X, (1) — ko) (23b)
1<p<asnj=j; kkz
Fo(X(1) > > ) cf'ij' W Ht//(2’ X (1) -kp) (23c)
I1< - <nj ] 1,' .
n .
F, (X(t)) = z_ » cﬁfl o [Ty (2!, (1) ~ k) (23d)
i= In KKz p=:
Generally, the initial resolutiorj ,, (M= 12,---,n) are chosen to be the same, thatjisz j, == j, = J,-
Similarly, the highest resolution levels are set talpe=J, =---=J,, = J . Note that if the wavelet series (14)

is employed, the initial and highest resolution levels in (22) are usually setjtp bel, =J for m=1,2,..n.



Assume thaM wavelet bases (mother wavelet or scaling fions) are required to expand the NARX model

(8), and for convenience of representation also assume thdtilaeelet bases are ordered according to a single

indexm, that isW ={l//m} mzl, then (23) can be expressed as edirin-the-parameters form as below:

y(t) = n%lamwm (t) +&(t) (24)

which can be solved using linear regressashniques. Note that, the regressor farklily={y/ } M, might be

redundant, since in practice it is usually true that the sampled data only form a sparse distribution in the input
space. Consequently, the regression problem is dlitposed and therefore somapproaches should be
employed to resolve this problem. It has been proven that the forward orthogonajueass $OLS) method is

an effective approach to solve this ill-posed problem (Billietgsl. 1988, 1989, Korenberg al. 1988, Cheret

al. 1989). The regressor selection problem will be discussed in the next section.

From (12), every wavelet, orthogonal or not, generates a wavelet series representation fdr ady? (R).
From (14), the wavelet bases in the wavelet serieggeptation (12) can be replaced by orthogonal scaling

functions with a large resolution. This provides moeedflom in the choice of basis functions in the wavelet

series decomposition.

4.3 Expanding the functional comporensing multiresolution wavelets models
Take the two-dimensional additive model (9) as an example. Followingei\&@i (2003), each functional

component in the model (9) can be expanded idrtincated multiresolution wavelet decompositions as

0% (0) = 2}l O+ LT B0, (%, (0), p=120m. 25
(6 0% (0) = 2 2 7 . (3,006, ()
' Zl_;szﬂﬁi‘i?é?@,kl (% ), (% (1)
* LZJ_ZkZlkZZﬂii??é?coj,kl (%, ()41, (%, V)
* ;Zj_zigﬂj(i?s)(ﬂ;,kl (X, (), (X, (). 1< p<gs<n. (26)

Inserting Egs (25) and (26) into (9) yields
YO = (%0, %,) + et)

=0+ 2 X %%, )+ 2 Y 3 A0, 0)

p=1jzj; k

+ 2 22w B (X (D), 4, (%, (1)

I<p<gsn Kk ky

D 22 BEIRS ( ©)e 4k, (% (1)

I<p<gsnijzj, k; k;

D YIY BER 0, (X (D)4, (%, (1)

I<p<gsnj>j, k; ks

10



+ 2 I BE g (X, )0, (X, (1)) +elt) (27)

I<p<gsn jzj, kg k;
which can be rearranged and converted into a linear-in-the-parameters problem in the form of (Z&8peaith
A (p) (P (= (pa)(@) (pa)(i) i ;
to the wavelet coefficients; " , 5" (p=1,2,...n), ander; " , B4l (1< p<q<n,i=1,23). This can
be solved using least squares type algoritiwh#ch will be discussed in the next section.

Although many functions can be chosen as scaling and wavelet functions, most of these atableotrsui
system identification applications, especially ie ttase of multidimensional and multiresolution expansions
because of theurse-of-dimensionality. An implementation, which has been tested with very good results,
involves B-spline and B-wavelet functions in multokgion wavelet decompositions (Billings and Coca 1999,
Liu et al. 2000, Coca and Billings 2001,Wei and Billings 2002). B-spline wavelets were originally introduced by
Chui and Wang (1992) to define a class of semi-orthogonal wavelets. The reasorakéhttisnmplementation

particularly suitable in system identification are summarized below:

e B-spline wavelets are piecewise polynomial functiorfiieft algorithms for computing these functions and
their derivatives are available.

e B-spline wavelets have local support and provide near-optimal time-frequency localization.

e B-spline wavelets outperform other wavelet decompositions in terms of approximation rate .Thidhateans t
few resolution levels are required to approxinaafienction in order to achiegegiven accuracy. Since each
extra level doubles the amount of computations, the choice of wavelet is clearly important. This

supports the key parsimony principle in system identification.

e B-spline waveletsp[ i (X) are symmetric for even orderand anti-symmetric for odd ordes, that is,

A" (x) = (<)Mt (2m—1- X) , where [0, 2+1] is the support of the B-spline wavel@d™” (x) . In
application to signal analysis, it is very import@ntwavelet functions to possess the property of symmetry
and anti-symmetry. This is essential to avoicbdisin in the reconstruction of compressed data (Chui 1992).

For the definition of B-spline wavelets and more detailsut the properties of B-spline wavelets, see the work
of Chui and Wang (Chui 1992, Chui and Wang 1992).

4.4 Hybrid decomposition models

It has been shown in subsections 4.1, 4.2 and 4.3 that each functional component in the NARX model (8) can be
expressed using wavelet networks, wavelet serigaultiresolution wavelet decompositions. Usually, all the
functional components in the NARX model (8) are expanded using the same decomposition, for example, the
super wavelet network where all the functional components in the NARX model (8) are expressed using the
radial wavelet network with the same type of radiathmpwavelet, or, the multirekition wavelet model (27)

where all the functional componerage expressed using wavelet multireion decompositions with the same

type of mother wavelet and scaling function. However, it should be pointed out that it is hot necessary to require

all the functional components be expressed using the typ@ef decomposition with the same mother wavelet.
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In practice, different types of decompositions or different types of mother wavelets can be used simsbjtaneo
in a WANARX model, for example,

e Expand all the first-order (unvariate) functionaimmnents using wavelet multiresolution decompositions
based on a certain type of wavelet and scalinctifin, say the Haar wavelet (first-order B-spline wavelet)
and scaling function, and expand all the second-order(bivariate) functional components using wavelet
multiresolution decompositions based on anothper ¢f wavelet and scaling function, say the 4th-order

B-spline wavelet and scaling function.

e Expand all the first-order (unvariate) functionainmmnents using wavelet multiresolution decompositions

and expand all the second-order (bivariate) functional components using wavelet series.

The idea of using hybrid decomposition models is to sufficiently utilize the local properties of different types of
basic wavelets or scaling functions simultaneously, tanemedy the weakness of one wavelet and/or scaling
function with another. A hybrid decomposition modebften advantageous over a single decomposition model

which use only a single type of mother wavelet or scaling function.

4.4.1 Adaptive wavelet decompositions versus wavel et series and multiresol ution wavel et decompositions

As noted in the section 4.1, the wavelets used intagawavelet decompositions (wavelet networks) should be
explicitly expressible and differentiablEhe gradients of the criterion functidf) and thus the gradients for each

of the wavelet functions should be calculated beforehand, and then Gauss-Newton type sditaptimiethods
such as steepest decent and stochastic gradient methrotle used to optimize the unknown parameters. Gauss-
Newton optimisation methods are often in some esengial-condition dependentWhen the number of
parameters is large, the convergence rate will be slesy and a great number of iterations are required. In
addition, these methods are apt tinweerge to local minimum. In genéraherefore, the adaptive wavelet

decomposition may not be suitable for high dimensional problems.

Using wavelet series or multiresolution wavelet aepositions, the WANARX model (8) can be converted
into a linear-in-the-parameters problem with respethéocorresponding wavelet dbeients. Notice, however,
that the number of potential terms in the model might be very large, but a lot of the candidate terms may be
redundant and should be removed from the model. The well known forward orthogonal least squayes (OL
algorithm (Billings et al. 1988, 1989, Korenbergt al. 1988, Chenet al. 1989), combinedvith the error
reduction ratio (ERR) index, which me@ss the significance of each candéatodel term, can be used to solve
linear-in-the-parameters problems involving a great number of candidate terms whichposglss severe
redundancy.

4.4.2 Radial wavelet networks versus compactly supported wavel et multiresolutoin decompositions

Both radial wavelet networks (Zhang 1997) and multiresolution wavelet decomposition models (Billings and
Coca 1999, Liwet al 2000, Coca and Billings 2001, Wei and Billings 2002) provide powerful representations for
nonlinear systems. The model based on the radial wavelet frame (19), or the fixed grid wetvedek,
resembles in effect the well known radial basis functRBF) networks in structure with the Gaussian or thin-
spline functions replaced by radial wavelets, which can generate single scaling wavelet frames. The main
advantage of the decomposition based on the radial wdreata (19) is that the radial construction often leads

to a smaller number of candidate regressors (moelehs) compared with the multiresolution wavelet
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decompositions where the compactly poied tensor product wavelets are used. Comparing the multiresolution

wavelet models with the radial wavelet networks in detail, the following differences are worth noting:

i) The compactly supported wavelet basis functionsetample, the B-spline wavelet and scaling functions
considered in this study, define a lkiethical multiresolution structure wifixed and regular dilation-translation
sampling. Thus the location and scale of each basisidanis known beforehand (see sections 6.2 and 6.3 for
details). In radial wavelet networks, however, the basistions have to be defined by means of a separate

approach, for example, to check the eahi each radial wavelet with respecttbthe process sampling points.

ii) In the compactly supported wavelet multiresolutoimded, it is not required #t every regressor (model
term) include all the process variablesraa radial wavelet network. Thii@vs more flexibility in selecting the

correct model structure and avoids model over-fitting.

iii) B-spline wavelets are compactly supported. Thus, at a given resolution scale, the number of B-spline
wavelets is deterministic. In fact, at each resolut®rel only the B-spline wavelets which cover the data
domain need to be considered. This means that a limitedber of B-spline wavelets need to be considered in
the truncated multiresolution wavelet model and these are determined by the lowest and the highest resolution
scales. Although almost all radial wavelet functions are nearly compactly supported, they onlyamdigtas
the independent variables of these functions are far fremcentre. In practice, radial wavelets are usually
truncated so that the wavelet support overlaps wighddita domain. However, the truncation of the wavelet

support might deteriorate the natural approximation property of wavelets.

5. System variable selection and model term (wavelet regressor) deter mination

Variable and term selection are generic problems in nonlinear system identification. Once the significant
variables have been selected, the model terms can be determined using a term selection algorithm ogrerating ov
the selected variables, a parsimonious model structure can then be identified from the candidastet naodle

finally the parameters can be estimated based on this model structure.

5.1 System variable selection

The first problem encountered in WANARX modellinghisw to determine which variables should be included
in the model. It is often the case in practice that some of the varigbl¥s,---, X, are redundant and only a

subset of these variables is significant. Inclusion of redundant variables might result in a much more complex
model since the number of model terms increases dicaiya with the number of variables. Furthermore,

including redundant variables might lead to a large number of free parameters in the model, and as a
consequence the model may become oversensitive to training data and is likely to exhibit poor generalisation

properties. Therefore, it is important to determine which variables should be included wdide m

The purpose of variable selection is to pre-select asubssisting of the significantriables or to eliminate
redundant variables from all the candidate variables of a system under study prior to model teion.détsct
required that the selected significant variables alone should sufficiepiigsent the system. Based on these
observations, a new effective variable selection algorithm @f\&i 2004), has been proposed and can be used

to select significant variables prior to fitting a WANARX model.
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5.2 Model term determination
As explained in Section 4, the truncated regular wavelet frame, wavelet series and multiresolution wavelet

decompositions can be converted into a linear-in-the-parameters form
M
Y(t) = 200 P (1) + (D) (28)
m=1

wherepm(t) (m=1,2,...M) are regressors (model terms) producedth®y dilated and translated versions of

mother wavelets or scaling functions, which are in tieiatiary considered. Generally, not all the model terms
make an equal contribution to the system output and terms, which make little contribution can be omitted. A
parsimonious representation, which contains only the significant terms, can often be obtioetthé loss of

representational accuracy by elinting the redundant terms. Define

P™ ={p, :1<i, <M; k=12--,m}, n=1.2, ..M, (29)
The model term selection procedure is in fact an itergtiveess which searches thrownested term set in the
sense that

PO cP@ c...c P™ ... (30)

This makes both the complexity and the accuracy of the representation based on these term sets to increase until

a suitable term set is found, i.e., there exists an inMgetgenerallyM ; << M ), such that the model

y(t) =3 6, p, () +e(t) (31)

provides a satisfactory represdita over the range considered for the measured input-output data.

A fast and efficient model structure determination approach has been implemented using the forward
orthogonal least squares (OLS) algorithm and the eeduction ratio (ERR) criterion, which was originally
introduced to determine which terms should be included in a model(Bi#irads1988, 1989, Korenberg al.

1988, Cheret al. 1989). This approach has been extensively studied and widely applied in nonlinear system
identification (seefor example, Chest al. 1991, Wang and Mendel 1992, Zhu and Billings 1996, Zhang 1997,
Hong and Harris 2001). The forward OLS algorithm involves a stepwise orthogonalization of the regressors

a forward selection of the relevant terms in (B8ped on the error reduction ratio (ERR) (Billireysl. 1988,

1989).

6. Some practical issues associated with implementation

Emphasis is concentrated on wavelet series and maltitesy decompositions, and it is assumed that some
compactly supported wavelets or/and scaling functamesconsidered in these decompositions. Some practical
issues including data normalization, highest resoluterl determination, translation parameter selection and

wavelet dictionary determination are considered.

6.1 Data pre-processing

The original observational dateé(t) =[X (t), X, (t),---, X, (t)] " are often normalized inta standard domain,

for example the unit hypercup@,1]", for the convenience of problem destidp. This is especially true when
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a compactly supported wavelet and/or a scaling functierclosen in the wavelet series (12) or (14), and the
multiresolution decomposition (13). Taking the univariate Haar wavelet (the first-order B-spliaketyvas an
example, it is much easier to sel¢lae starting resolution level and the range of the shift parameters if the

sample data has been normalized to [0, 1].

Assume that the initial observatiodse R" fall into the finite hypercute, ,b,]1x[a,,b,]x---[a,,b,],
X(t) can be normalized ia the unit hypercubf0,1]" by means of the following simple linear transform
X ()= (X (0-a)/(b —a).i=12-n.

By another transformx (t) =[2X (t) - (b +a)]/(b —a,), i =12,---,n, the original dat& can be
normalized into the standard hyperc[ibd,1]" .

The modelling can then be performed in the standard hypel@bF' or [-1,1]", and the model output can
then be recovered to the original system operating domain by taking the inverse transform which Bonverts
back into X .

6.2 Determination of the highest resolution level
In theory, the wavelet series (12) and the multiresolution wavelet decomposition (13) are infinite expansions. In
practice, however, it is impossible to include infiniegms in these wavelet decompositions. Therefore, the

infinite decompositions are always truncated at appropriate dilations (resolutions) and translations.

Consider the one-dimensional multiresolution wavelketodnposition (13) and assume that the function
f (X) is defined in [0, 1] ancKis an independent variable which is uniformly distributedGd], that is, X

itself can be considered as “time”, then the basis fonst{(dilated and translated versions of the wavelet and
scaling function) in the multiresolution wavelet cdenposition (13) are mutually orthogonal and the
decomposition is unique. Assume also that the Haar letaythe first-order B-spline wavelet) and scaling
function are used in the decomposition, then a truncated decomposition with the initial resolutiprasdatee

highest resolution scajg.,=J can be expressed as

2001 J 2l
f(X) = Zajo,k¢j0,k(x)+ ZZﬁj,k¢j,k(X) (32)
= =7 k=0

Clearly, the higher the upper resolution scale Idy¢he more accurate the approximation is. A recommended
approach for selecting the highest schig to utilize the features of the sampled signal, for example, the natural
frequency of the signal to be approximated. Assume that the maximum natural frequency of the samped signal
is f

the highest scale can be empirically chosej).as=[l0g, (Mf ,,,)] , whereM is a positive number,

max max
say betweer2*and 2°, and[-] denotes taking the integer value of the corresponding number (Wei and Billings
2002).

In practical identification problems, however, théhogonality of the mutiresolution wavelet decomposition

might be lost, since most observational data fail to satisfy the uniform distribution assumption. Also in

dynamical system modelling, the varialflén (32) is usually dependent on tirheand X(t) often represents

lagged outputg(t-p)( p = 12,--+,Nn, ) or lagged inputs(t-q) (q = 12,---,n,), which are usually sparse in the
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normalized interval [0, 1] The empirical rulej,, =[l0g,(Mf, )] for selecting the highest resolution

max

scale can however still be used.

6.3 Shift parameter selection
For a compactly supported wavelet, the shift parankeieidetermined by the corresponding resolution scale

For example, at a given scglehe shift parametds in the Haar wavelet multiresolution decomposition (32) is
chosen ak = 01,--- ,Zj —1(=0,1,...). Generally, for a compactly supported wavemk) with an integer

support S¢, =[0,K ] , where K, is integer, the support for the dilated and translated wavelet
9 (=222 x=K) is [277k, 27/ (K, +K)], therefore, the shift parametérat a resolution scalp

should be taken as (K, —1) <k < 2) —1. This is also true for a compactly supported scaling funaix) .

6.4 Wavelet dictinary determination

Taking the truncated wavelet series (23) and thecatan mutiresolution wavelet decomposition (27) as an
example. The elements of the wavelet dictionary areéefas the wavelet bases (dilated and translated versions
of wavelets and scaling functions) involved in the decompositions. The number of alated dnd translated
versions of wavelets and/or scaling functions is defined as the length of the waviletidiciThe model terms

in the approximation expressions are produced by some of the elements of the wavatetrgicilearly, once

the mother wavelets and/or scaling functions have been chosen, the wavelet dictionary is etktgyntire

resolution scale parameteand the shift paramet&r For compactly supported wavelets and scaling functions,
the wavelet dictionary depends upon the initial resolution s¢ale and the highest resolution scdlg,, .
Therefore, it is important to choose appiafe values for the initial resolution scaje.nm and the highest
resolution scalg max» Since these values determine the degree of the complexity of the wavelet dictionary
whatever types of wavelets are used. Tagcally, for a given initial resolution scaqumn, the higher the upper
resolution scale levej max» [N€ mMore accurate the approximation isyéweer this may result in a more complex

wavelet dictionary and thus a more complex decomposition, since too much resolution might result in a severely

redundant wavelet dictionary or an over-fitted model.

In practice, for dynamical systeidentification, the variabl& in the wavelet functiorpjyk(x) and the

scaling functiong(X) is usually the lagged system inputs or/and outputs, and the observati(ty @fre often

sparsely distributed and therefore the problem can lp@siéd. This can produce a wavelet dictionary and the
candidate model terms (regressors) that are redundant. However, the redundancy problem \waah dedstble

significant terms can be detected using a term detection algorithm.
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7. Examples

In this section, two examples are provided to illusttageapplication of the WANARX modelling structure. The
input-output data used for identification in the first epéerare simulated from a nlimear system with a known

model; it is assumed, however, that no a priori information is available. The second example involves a real
system and the measurements taken from satellite data, correspond to the solar wind péBarfiepart) and

theDst index (output) for this terrestrial magnetospheric dynamic system.

7.1 Example 1—a nonlinear system disturbed by noise

Consider the following model

_05+y(t-1) 2y(t-2ut-1)
C1ey(t-1) 1+ui(t-))

y(®) +u(t-1) +&(t) (33)

whereu(t) is an impulse sequence with random amplitA¢e) and random durkfign 5< A(t) <19,
1< A(t) £40;£(t) is a noise sequence obeying a normal distribution with a standard derbzftia@.OOZS.

A data set consisted of 1000 input-output samples,hndmie illustrated in Figure 1, was generated by simulating
the system. The data set was divided into two parts: the first 500 samples (from 1 to F0Qisederfor
identification and the second part (from 501 to 1000) was used for testing.

The aim of the identification was fit a WANARX model to describe threlationship between the input and
output. The first step is to determine the significant variables which can sufficientlybgeiwi relationship
between the input and output. The variable selection algorithm oeMé&i (2004) was applied and the three
significant variables: \{(t-1), y(t-2), u(t-1)} were selected. A one-dimensional WANARX model was therefore

selected for this system
y(©) = f(y(t-1), y(t—2),u(t-1) + &)
= fi(y(t=D) + f,(y(t-2) + f;(u(t - 1)) + () (34)
Expanding eacH; (-) using the multiresolution wavelet decomposition (13), gives
04 0) = T a0 () + JiOkezK Aot o). 1123, (35)
whereX, (t) = Yt —1), X, (t) = y(t —2) , %, (t) =u(t —1); the 4th-order B-spline wavelet and scaling function
were used in this decompostion, thifs={~3-2-10} and K; ={-6-5,-- -1, 01---,2) —1} forj=0,1,2,3,4.

Although 195 basis functions (model terms) are involved in the one-dimensional WANARX owdglel3 of
these were selected to be significasing the forward OLS algorithm. The final model contained only 13 terms
(basis functions), which are listed in Table 1.cAmparison of the model predicted outputs and the
measurements, along with the modegdiction errors over the test set, are shown in Figure 2. The model
predicted output (MPO) of an idéfiied NARX model is defined as

9mpo(t) = f (9n*po(t _1)1"'! 9n‘p0(t - ny),U(t —1),"',U(t - nu)) (36)
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The model predicted outputs are recursively estimatddsnused to calculate the model prediction errors
é(t) = y(t) - 9mpo (t)

wherey(t) (t=1,2,...N) are the system measurements.

0 100 200 300 400 500 600 700 800 900 1000
(a)

Clutput
=

L 1 L 1 L 1 1 L 1
0 100 200 300 400 500 GO0 700 800 900 1000
)]

Figure 1 The system input and output for Example 1. (a) Input; (b) Output.

1 1 1 1 1 1 1 1 L
500 550 600 650 700 750 800 850 900 950 1000
@

1 1 1 1 1 1 1 1 L
500 550 600 650 700 750 800 850 900 950 1000
(®)

Figure 2 The model predicted outputfM) and the model prediction errors f&xample 1 over the test set, points 500-
1000 only. (a) Comparison of model predittrutputs and the measuremexity Model prediction errors. ( In (a), the solid
line denotes the measurements, and the ddsteedenotes the model predicted outputs.)
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Table 1 The basis functions, parameters andahesponding error reduction ratios for Example 1.

Search steps Model terms Parameters ERRsx100%
1 $o (Ut 1) 1.15884E+000 94.55335
2 Poo(U(t —1)) 1.48091E+000 3.29547
3 Po1(Y(t—2)) 5.26563E-001 2.10644
4 P02 (Y(t—2)) 1.33708e-001 0.01691
5 P-4 (Ut -1)) 5.43449E+000 0.00432
6 @, 3(Y(t—2)) 1.93749E-002 0.00730
7 @, 5(y(t-1) 6.62867E-002 0.00205
8 @14 (Y(t—-2) -2.83083E-002 0.00151
9 P31 (Y(t-1)) 6.52100E-003 0.00077
10 P, 4 (Y(t—2) 6.14276E+000 0.00047
1 @, (Ut -1) 1.80645E-002 0.00049
12 @5 5 (U(t-1)) 1.87050E-002 0.00069
13 P35 (y(t—2)) 1.71538E-001 0.00049
Note: P (X) = 2129 (2! x — k) — the 4th-order B-spine functions;

@i (X) = 212 (2" x — k) — the 4th-order B-spine wavelets.

7.2 Example 2-a terrestrial magnetosphere dynamic system

The sun is a source of a continuous flow of charged particles, ions and electrons called thandolBine

terrestial magnetic field shields the Earth from the solar wind, and forms a cavity in the solar wind flow that is
called the terrestrial magnetosphere. The magnetopause is a boundary of the cavity, and its position on the day
side (sunward side) of the magnetosphere can be determined as the surface where there is a batanteebetw
dynamic pressure of the solar wind outside the magnetosphere and the pressure of the teagstiial field

inside. A complex current system exists in the magnetosphere to support the complex structure of the
magnetosphere and the magnetopause. Changes in the solar wind velocity, density oc fielgniethd to

changes in the shape of the magnetopause and variations in the magnetospheric current systeam fintlaelditi

solar wind magnetic field has a component directed towards the south a reconnection between the terrestrial
magnetic field and the solar wind magnetic field is itéth Such a reconnection results in a very drastic
modification to the magnetospheric current system and this phenomenon is referred to as magnetic storms.
During a magnetic storm, which can last for hours, the magnetic field on the Earth’s surface will change as a
result of the variations of the magnetospheric current system. Changes in the magnetic field induce considerable
currents in long conductors on theréstrial surface such as power linesl gipe-lines. Unpredicted currents in

power lines can lead to blackouts of huge areas,Ghtario Blackout is just one recent example. Other

undesirable effects include increased radiation to crew and passengers on long flights, and effects on
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communications and radio-wave propagation. Forecaggognagnetic storms is therefore highly desirable and

can aid the prevention of such effects. Thetindex is used to measure the disturbance of the geomagnetic field

in the magnetic storm. Numerous studies of correlations between the solar wind parameters and magnetospheric
disturbances show that the product of the solar wind velvtiyd the southward component of the magnetic

field, quantified byBs, represents the input that claa considered as the input to the magnetosphere. Denote the
multiplied input byVBs.

Figure 3 shows 1000 data points of measurements recorded from satellites, of the solar wind p&Bameter
(input) and theDst index (output) with a sample periddlhour. The purpose here is to identify a nonlinear
model to represent the input-output relationship betwé(input) andDst. The effects of other inputs on the
system will be neglected in the present study. A variable selection algorithm @& We{2004) was applied
and nine significant variablesy(-1), y(t-2), y(t-3), y(t-4), y(t-5), y(t-6), y(t-7), u(t-1), u(t-2)} were selected.
These nine variables are used to forhylrid WANARX model for the data set

y(t) = f(yt-2,y(t-2),--, yt—7),ut - 1,ut - 2)) + e(t)
=a +Za'ixi (t)+zzbij X (t)Xj (t)

i=1 j=i

£ 00O+ D, 000, % )+ e @)

i=1 j=i+l

where X; (t) = y(t —i) for i=1,2,...,7 andx; (t) =u(t —i +7) for i=8,9,f; and f; are unknown univariate

and bivariate functions which can be approximated lgy and two-dimensional wavelet decompositions. In this
example, both the input and output data points were initially normalized and the modelling procedure was

performed on the standard hyperc{Bd]", wheren=9. The first 500 input-output data points were used for
model identification and the remaining 500 datenfsowere used for testing. By expanding eafq:mnd fij

using the wavelet series decomposition (14), where therder B-spline scaling futions were used in each
decomposition, the model (38) was then converted into a linear-in-the-parameters problem and this was then
estimated using the forwafLS-ERR algorithm (Billingset al. 1988, 1989, Korenberg al. 1988, Cheret al.

1989). The final identified model, which involved 16 reggors selected from 891ndkdate terms, was of the

form

16
y(t) =6,y(t-1)+ > 6,B (1) (39)
i=2

where B, (t) (i=2,3, ...,16) are wavelet regressors formed by the 4th-order B-spline scaling functiofls, and

(i=1,2,...,16) are the parameters. The terms, parameters and corresponding ERR values are listed in Table 2.
Notice again that each variable in the model (38) and (39) was initially normalig8d}tq and the model
outputs were recovered to the original system operating domain by taking inverse transforms.
In practice the one-step-ahdade-hour-ahead) predictions for tBet index are not useful, since it is difficult
during a few minutes to collect all data from botteBite measurements and ground based magnetometers and
to feed them into the model (39) to obtairedictions. On the other hand, forecasting [tse index several

months ahead of the real measurements is not required. To be practically useful, the predictiohe shadé&l
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on some time scale which is intermediate betweertvlo extreme cases. A 12-hour-ahead prediction based on
(39) is considered here. The comparisons between the 12-step-ahead predictions, the dicel pugputs

and the measurements are shawFigure 4. As expected the model predicted outputs are not as good as the 12-
step-ahead predictions, but the model predicted outputs provide good long tetigmedind give confidence

in the identified model. The discrepancy between thdehpredicted outputs and the measured values of the
Dst index are believed to be the result of other inputs which affect the system output but were not included in the

current model.

%Bs

1 1 1 1 1 1 1 1 1
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Figure 3 The input and output data of the téri@snagnetospheric dynamic system in Example 2
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Figure 4 Comparisons of the six-step-ahead predictions, model predicted outputs anduhenmeasor the solar wind Dst
index in Example 2, over the test set, points 500-1000. (a)el2ahead predictions; (b) Mdgeedicted outputs. ( Solid—
measurements; Dashed—12-stepahpredicted outputs; Dett—model predicted outputs)
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Table 2 The selected model termgireated parameters and the correspondiR& Ezalues for the system in Example 2

Number B (t) o, ERR x100%
1 y(t-2 6.10269e-001 95.65172
2 P01 (Y(t —1)do_, (u(t - 1)) 6.39257e-001 2.06315
3 P51, (Ut 1)) 2.17571e-003 1.02247
4 Po3(Y(t—5))doo (Y(t —6)) -4.09044e+001 0.41470
5 Poo (Yt =7))poo (Ut - 2)) 7.36766e+001 0.09880
6 Ps10(U(t —1)) 4.01684e-002 0.02400
7 Poo (Ut =1))Pg, (Ut —2)) -4.50903e+001 0.00962
8 Ps18(U(t —1)) -5.89649e-002 0.00300
9 Ps16(U(t —1)) -4.60957e-002 0.00368
10 Ps15(u(t —1)) -4.82462e-002 0.00308
11 Poo (Yt =2))doo (Ut —2)) -5.93993e+001 0.00746
12 Ps16(Y(t=T7)) 6.68900e-003 0.00343
13 Poo (Yt —2))do_3(y(t—3)) 5.40887e+000 0.00327
14 Ps14(U(t —1)) 1.51620e-002 0.00328
15 Poo (Yt =3))do_»(Y(t—4)) -6.02775e+000 0.00223
16 Poo (Yt —2))do o (Y(t —4)) 2.87946e+000 0.00345

Note: Pk (X) = 212 (27 x— k) — the 4th-order B-spline scaling functions

8. Conclusions

A unified wavelet-based NARX model structure, which incorporates wavelet networks, wavelet sdries an
wavelet mutiresolution decompositions, has been introduced for nonlinear input-output system identification.
The new WANARX model structure allows high-order loear systems to be expressed as a sum of additive
low-dimensional submodels. This in some sense patrtially alleviates the difficulty afrteeof-dimensionality

for high-order nonlinear system modelling. The new identification algorithm is more constructive and
transparent compared with mosttbe existing modelling approaches swchtraditional neural networks and

radial basis function networks in the sense that the new algorithm automatically detects the model terms and
estimates the parameters simultaneously, and finally provides a transparent parsimonious model. The new
algorithm is also more flexible in the sense that it lsarused to identify arbitrary severely nonlinear systems,
even systems with discontinuities and jumps, owintpécinherent time-frequency property of wavelets.

In the literature two classes of wavelet-based modelling algorithms have been proposed for nonlinear system
identification, these include wavelet networks anditadd models of univariate functions with respect to
multiresolution decompositions. In wavelet networks, th&sbfunctions are often chosen to be radial wavelet
functions, which can generate single scaling wavelet frames but which generally require that everyr regress
(model terms) are included in all the process variables. Most radial wavelets are infinitely supported dnd shoul

be truncated so that the wavelet support overlapsniitte data domain. Although these features of wavelet
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networks may involve a relatively small number of candidate regressors, it follows that these features might also
lead to a deterioration of the natural approximation properties of wavelets and this suggests that wavelet
networks will be more liable to over-fitting. The neveidification algorithm propeasd in this study, however,
overcomes the drawbacks associated with radial wavelets by introducing a semi-orthogonal multiresolution
wavelet decomposition structure based on B-spline wavelets as discussed in Section 4.

Additive submodels of univariate functions with respect to multiresolution decompositions are simple and
generally involve a small number of candidate regressors. However, these models may sometimesentat be ab
effectively describe severe nonlinearities of complexesgst This motivates the introduction of the expressions
of additive submodels of multivariate functions witlsgect to multiresolution decompositions as proposed in
this study. Every functional compantein each of the additive submoslalan be decomposed using wavelet
frame decompositions, wavelet series or wavelet multiresolution decompositions. An emphasis in the present
study has been to focus on wavelet series and multiresolution wavelet decompositions, and the semi-orthogonal
multiresolution wavelet decomposition structure based on B-spline wavelets which wasnezcted as a
powerful approximation approach for a wide range of nonlinear systems. By expanding each functional
component in the WANARX model using multiresolutiavelet decompositions, the model identification and
parameter estimation problem can be converted into a linear-in-the-parameters problem.

The main disadvantage of the new wavelet based modelling approach is that a large number of candidate
wavelet basis functions might be involved in the initial wavelet models for a high-dimensional system with
several variables (large time lags for the system input and/or system output). Fortunately, this problem can be
successfully resolved by employing an iterative modeictiire detection proceduo®upled with the forward
OLS-ERR algorithm which can efficilp select the significant model terms and estimate the parameters
simultaneously.

Problems which need to be considered further include how to determine the highest ordesudsintbdels
(multivariate functional components), and how to choose the highest resolution scale for wavelet decompositions.
For a high-dimensional system with several variables (or with many lagged inputs and/or outputs afrtije syst
these two factors will dramatically affect the numbecarfididate model terms in the initial wavelet models. An
effective and/or possible automatic way of determinirgg¢htwo factors is an important topic for future study

and applications.
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