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Abstract: A new unified modelling framework based on the superposition of additive submodels, functional 

components, and wavelet decompositions is proposed for nonlinear system identification. A nonlinear model, which 

is often represented using a multivariate nonlinear function, is initially decomposed into a number of functional 

components via the well known analysis of variance (ANOVA) expression, which can be viewed as a special form of 

the NARX(Nonlinear AutoRegressive with eXogenous inputs) model for representing dynamic input-output systems. 

By expanding each functional component using wavelet decompositions including the regular lattice frame 

decomposition, wavelet series and multiresolution wavelet decompositions, the multivariate nonlinear model can then 

be converted into a linear-in-the-parameters problem, which can be solved using least-squares type methods. An 

efficient model structure determination approach based upon a forward orthogonal least squares (OLS) algorithm, 

which involves a stepwise orthogonalization of the regressors and a forward selection of the relevant model terms 

based on the error reduction ratio (ERR), is employed to solve the linear-in-the-parameters problem in the present 

study. The new modelling structure is referred to as a Wavelet-based ANOVA decomposition of the NARX model or 

simply WANARX model, and can be applied to represent high-order and high dimensional nonlinear systems.  

Keywords: Nonlinear system identification; NARX and NARMAX models; wavelets; orthogonal least squares 

1.   Introduction 

The main task in mathematical modelling is to construct a mapping, which connects the inputs and outputs and 

reflects the relationship between these with an acceptable accuracy. In experimental data based modelling, 

known as system identification, the key problem is to construct a suitable model, which involves the smallest 

number of input variables (lagged inputs and lagged outputs for dynamical systems) and the simplest model 

structure containing the smallest number of adjustable parameters. For high dimensional systems, however, 

parsimony and accuracy are difficult to achieve simultaneously. Therefore, trade-offs between model parsimony, 

accuracy, and validity have to be considered. 

A key problem in modelling high dimensional nonlinear systems is to develop efficient model construction 

procedures that overcome the curse-of-dimensionality. One approach for representing continuous functions of 

several variables is to describe multivariate functions as a superposition of a number of continuous functions 

with fewer variables. This is the essence of Hilbert’s 13th problem, which was resolved by Kolmogorov where it 

was concluded that every continuous function of several variables can be represented by the superposition of 

functions with only two variables (see, Gorban 1998 and the references therein). The problem of representing 

continuous functions of several variables by continuous functions of a single variable has also been solved and 
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this can be expressed using Kolmogorov’s theorem which states that every continuous function of n variables 

defined in the standard n-dimensional cube can be represented in the following form 
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where  are some continuous functions which depend on the function and  are some continuous 

functions which are independent the function . This theorem guarantees that every continuous function can be 

approximated by the operations of addition, multiplication, and superposition of a number of continuous single 

variable functions with arbitrary accuracy. This theorem, however, does not provide a solution for how to choose 

the additive functional components. Therefore it is not easily applicable in real system modelling. 
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Several applicable approaches have been proposed to realize the idea of representing multivariate functions 

using a superposition of a number of functions with fewer variables. The projection pursuit regression algorithm 

(Friedman 1981), radial basis function networks (Chen et al. 1990, 1992), and multi-layer perceptron (MPL) 

architecture (Haykin 1994) are among these representations for multivariate functions. The existing strategies 

that attempt to approximate general functions in high dimensions are based on additive functional submodels 

including the polynomial NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) 

representation introduced by Billings and Leontaritis (1982, 1985), the multivariate adaptive regression splines 

(MARS) introduced by Friedman(1991), and the adaptive spline modelling of observational data (ASMOD) 

introduced by Kavli (1993). The functional components can be arbitrary functions with fewer arguments and 

with global or local properties. Kernel functions, splines, polynomials and other basis functions can all be chosen 

as functional components (Hastie and Tibshirani 1990). 

A multivariate nonlinear function can often be decomposed into a number of functional components via the 

well known functional analysis of variance (ANOVA) expansions (Friedman 1991, Chen 1993) 
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where the first functional component  is a constant to indicate the intrinsic varying trend; , ,  are 

univariate, bivariate, etc., functional components. The univariate functional components  represent the 

independent contribution to the system output that arises from the action of the ith variable  alone; the 

bivariate functional components  represent the interacting contribution to the system output from the 

input variables  and , etc. As that will be seen later, the ANOVA expansion (2) can be viewed as a special 

form of the NARX (Nonlinear AutoRegressive with eXogenous inputs) model for dynamic input and output 

systems.   
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    Among almost all the functions used for the purpose of approximation, few have had such an impact and 

spurred so much interest as wavelets. Wavelet decompositions outperform many other approximation schemes 

and offer a flexible capability for approximating arbitrary functions. Wavelet basis functions have the property 

of localization in both time and frequency. Due to this inherent property, wavelet approximations provide the 
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foundation for representing arbitrary functions economically, using just a small number of basis functions. 

Wavelet algorithms (Coca and Billings 2001) process data at different scales or resolutions, which make wavelet 

representations more adaptive compared with other basis functions. Therefore, wavelet decompositions can be 

used to represent each functional component in the model (2). 

 In this paper, a new model structure which combines wavelets and the additive functional ANOVA 

decomposition of the NARX model, called the Wavelet-based ANOVA decomposition of the NARX model or 

simply WANARX, is introduced as a basis for nonlinear system identification. The wavelet decompositions, 

which have excellent approximation properties, are used to express each functional component. By expanding 

each functional component into wavelet decompositions, the multivariate nonlinear function can then be 

converted into a linear-in-the-parameters problem, which can be solved using least-squares type of methods. A 

stepwise forward least squares (OLS) algorithm, along with an error reduction ratio (ERR) index is used to select 

the significant model terms from a large number of candidate terms. Emphasis is concentrated on wavelet series 

and multiresolutoin decompositions in this study from the point of view of practical data analysis.    

The rest of the paper is organised as follows. The paper starts with a description of the well-known NARMAX 

model in Section 2, and the additive functional ANOVA decomposition of the NARX model is introduced. In 

Section 3, some introductory material on wavelet decompositions including wavelet frame decompositions, 

wavelet series and wavelet multiresolution decompositions, which establish the foundation for the WANARX 

model, are described.  Section 4 shows how to expand a WANARX model using the wavelet decompositions. 

Section 5 addresses system variable selection and model term detection problems. In Section 6, some practical 

issues associated with the implementation of the WANARX model are discussed.  Two examples, one a 

simulated system and one based on real data relating to the magnetosphere, are given in Section 7 to demonstrate 

the effectiveness and applicability of the WANARX  modelling structure. Conclusions are given in Section 8.  

2.    Nonlinear input-output representations 

In the past few decades, system identification and analysis methods for nonlinear systems have been extensively 

studied with many applications in approximation, prediction and control. Several nonlinear models have been 

proposed in the literature including the NARMAX model representation which was initially proposed by Billings 

and Leontaritis (Billings and Leontaritis 1982, Leontaritis and Billings 1985). The NARMAX model (Pearson 

1999) takes the form of the following nonlinear difference equation: 

  )())(,),1(),(,),1(),(,),1(()( tentetentutuntytyfty euy +−−−−−−= LLL                  (3) 

where  is an unknown nonlinear mapping,  and  are the sampled input and output sequences, 

and  are the maximum input and output lags, respectively. The noise variable  with maximum lag , 

is immeasurable but is assumed to be bounded and uncorrelated with the inputs. The model (3) relates the inputs 

and outputs and takes into account the combination effects of measurement noise, modelling errors and 

unmeasured disturbances represented by the noise variable.  
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     The NARX model is a special case of the NARMAX model and is described as 
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    One of the popular representations for the NARMAX model (3) is polynomial models, since any continuous 

function can be arbitrarily well approximated by a polynomial model (Schumaker 1981). Taking the case of 

SISO systems as an example and expanding model (3) by defining the function )(⋅f  to be a polynomial of 

degree l gives the representation 
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The degree of a multivariate polynomial is defined as the highest order among the terms, for example, the degree 

of the polynomial  is 2
32

2
13322

4
11321 ),,( xxxaxxaxaxxxh ++= =l 2+1+2=5. Similarly, a NARMAX model 

with polynomial degree means that the order of each term in the model is not higher than .   l l

    As a general and natural representation for a wide class of linear and nonlinear systems, model  (5) includes, 

as special cases, several model types, including the Volterra and Wiener representations, time-invariant and 

time-varying AR(X), NARX and ARMA(X) structures, output-affine and rational models, and the bilinear model 

(Pearson 1995). The ANOVA expansions (2) can also be viewed as a special case of the NARMAX model while 

representing dynamic input and output systems.   

    Now, consider the NARX model (4) and assume that the nonlinear mapping  in the model (4) can be 

decomposed into a number of functional components as the ANOVA expansion (2), then the NARX model (4) 

can be expressed as 

f
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This can be referred to as the ANOVA decomposition of the NARX model. Although the ANOVA expansion (2) 

or the NARX model (8) involves up to  different functional components, experience shows that a truncated 

representation containing the components up to the bivariate functional terms is often sufficient 
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This can often provide a satisfactory description of  for many high dimensional problems providing that the 

input variables are properly selected. The presence of only low order functional components does not necessarily 

imply that the high order variable interactions are not significant, nor does it mean the nature of the nonlinearity 

of the system is less severe. An exhaustive search for all the possible submodel structures of (2) is demanding 

and can be prohibitive because of the curse-of-dimensionality.  A truncated representation is advantageous and 

practical if the higher order terms can be ignored.  In practice, the constant term can often be omitted since it 

can be combined into other functional components.    
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    In practice, many types of functions, such as kernel functions, splines, polynomials and other basis functions 

can be chosen to express the functional components in model (8). In the present study, however, wavelet 

decompositions, which are discussed in the next section, will be chosen to describe the functional components in 

the additive models (8) and (9), and this will be referred to as the Wavelet-based the ANOVA decomposition of 

the NARX model or simply the WANARX model. 

3.   Wavelet decompositions 

Wavelet analysis (Chui 1992, Daubechies 1992) is based on a wavelet prototype function, called the analysing 

wavelet, mother wavelet, or simply wavelet. Temporal analysis is performed using a contracted, high-frequency 

version of the same function. Because the signal or function to be studied can be represented in terms of wavelet 

decompositions, data operations can also be performed using the corresponding wavelet coefficients.  

3.1     Wavelet frame decomposition 

Let ϕ  be a d-dimensional wavelet function and . Assume that there exists a denumerable family 

derived from

)(2 dRLf ∈
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Under the condition that ϕ  generates a frame (Chui 1992), it is assured that any function  can 

be expressed as 

)(2 dRLf ∈
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where  is an index set which might be finite or infinite, and  are the decomposition coefficients or 

weights. Eq. (11) is called the wavelet frame decomposition, which can be approximated by a neural network 

structure and it is therefore often referred to as a wavelet network (Zhang 1992). 

Γ jc jw

3.2     Wavelet series 

In practical applications the CWT (11) is often discretised in both the scaling and dilation parameters for 

computational efficiency. Based on this discretization, wavelet decompositions can be obtained to provide an 

alternative basis function representation. Take the univariate wavelet as an example. The most popular approach 

to discetise the CWT is to restrict the dilation and translation parameters to a dyadic lattice as  and 

 with .   Other non-dyadic ways of discretization are also available.  

ja −= 2
jkb −= 2 Zkj ∈,

Under some conditions (Chui 1992, Daubechies 1992), an arbitrary function can be expressed as )(2 RLf ∈
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where  and)2(2)( 2/
, kxx jj
kj −= ϕϕ Zkj ∈, . Eq. (12) is called a wavelet series. In comparison with the 

CWT (11), the wavelet series is more computationally efficient. But this is obtained at the expense of increased 

restrictions on the choice of the basic waveletϕ .  The wavelet series (12) can be extended to d-dimensional case 

by taking tensor product of one-dimensional wavelets or by choosing the radial types of wavelets.  

3.3     Mulitresolution wavelet decompositions  

It is known that for solving identification problems based on the regression representation it is useful to have a 

basis of orthogonal (semi-orthogonal or bi-orthogonal) functions whose support can be made as small as 

required and which provides a universal approximation to any  function with arbitrary desired accuracy. 

One of the original objectives of wavelet theory was to construct orthogonal (semi-orthogonal) basis in .  
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    Assume that the waveletϕ  and the corresponding scaling functionφ  constitute an orthogonal wavelet system, 

then any function can be expressed as the following multiresolution wavelet decomposition  )(2 RLf ∈
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where kj ,0
α  and kj ,β  are the wavelet coefficients,  is an arbitrary integer representing the lowest resolution 

or scaling level. Notice that from wavelet theory (Chui 1992, Daubechies 1992) if , the 

approximation representation (13) becomes the wavelet decomposition (12). In addition, from the property of the 

0j
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multiresolution decomposition (13), any function  can be arbitrarily closely approximated using the 

basic scaling functions  by choosing the resolution scale j to be sufficiently large. 

That is, there exists a sufficiently large integer J, such that 
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This means that in wavelet series representation, the wavelet bases can be replaced by scaling functions with a 

large resolution scale. 

    Using the concept of tensor products, the multiresolution decompositions (13) and (14) can be immediately 

generalised to the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by 

taking the tensor product of the one-dimensional scaling and wavelet functions (Mallat 1989) and this will be 

discussed later.   

4.   Expanding the WANARX model using wavelet decompositions 

The wavelet decompositions including the wavelet frame decomposition, wavelet series and wavelet 

multiresolution decompositions discussed in Section 3 can be adapted to express each functional component in 

the NARX model (8). Notice that it is impossible in practice to count infinite frame terms or wavelet bases in a 

wavelet decomposition.  Therefore, the infinite decompositions are always truncated at appropriate dilations 

(resolutions) and translations.   

4.1    Expanding the functional components using wavelet frame decomposition  

Each functional component in the NARX model (8) can be expressed using the truncated wavelet frame 

decomposition (11), take the functional component  as an example, this can 

be expanded as 
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employed simultaneously for approximating different functional components. This might enable the wavelet 

decomposition to be more flexible than traditional wavelet networks.   

Inserting (15) into (8), yields 
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This will be referred to as a super wavelet network. The values of the decomposition parameters , 

 and  can be obtained by minimizing a criterion function, say 
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where is the measurement at time t, and T is the data length. To minimise the function V, gradient descent 

type methods are required and thus the gradients of unknown parameters should be calculated first. Once the 

gradients have been obtained, Gauss-Newton type optimisation methods including steepest decent and stochastic 

gradient methods can be used to obtain the unknown parameters.  

)(ty

    Note that the wavelets used in the adaptive wavelet decomposition (wavelet networks) described by (16) 

should be explicitly expressible and differentiable. This restricts the choice of basic wavelet functions used for 

wavelet networks to a special class. The Morlet wavelet)(xϕ )2/exp(
2

0 xxj T −= ω , Gaussian wavelet )(xϕ  

)2/exp(
2

21 xxxx d −= L , and Marr (Mexican hat) wavelet )(xϕ )2/exp()(
2

21 xxxxd d −−= L  are 

among the examples which are often used in wavelet networks. The symbol ⋅ here denotes the Euclidian norm 

in .   )(2 dRL

Notice that a radial wavelet is often considered and the family (10) is often restricted in a regular grid, that is, 

the translation and dilation parameters and  in (10) are designed to form a double indexed regular lattice  ja jb

{ }djj
kj ZkZjkba ∈∈= −− ,:),(),( βαα                                                                                          (18) 

where the scalar parametersα  and β  are the discretization step with typical values 2=α   and 1=β .  

Expanding each functional component in (8) using a radial wavelet frame  
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The NARX structure (8) can then be converted into a linear-in-the-parameters problem, which can be solved 

using regression analysis techniques, and this will be referred to as a super wavelet network on fixed grid, or, 

super fixed grid wavelet network. If only the last functional component  in (8) is 

considered and expanded using a radial wavelet frame with the form of (19), then this decomposition can be 

))(,),(),(( 2112 txtxtxf nn LL
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treated as a standard linear regression problem with the dilated and translated wavelets as the regressors. This 

will be referred to as a fixed grid wavelet network, which is a special case of the super fixed grid wavelet 

networks considered here.   

4.2    Expanding the functional components using wavelet series 

Consider the functional component in the NARX expansion (8). This 

functional component can be approximated using the truncated wavelet series (12) or (14) 
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where )(⋅ψ is a scalar wavelet or scaling function. Now (20) can be expressed as 
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Inserting (22) into (8), yields 
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Generally, the initial resolution are chosen to be the same, that is, mj ),,2,1( nm L= 021 jjjj n ==== L .  

Similarly, the highest resolution levels are set to be JJJJ n ==== L21 . Note that if the wavelet series  (14) 

is employed, the initial and highest resolution levels in (22) are usually set to be JJj mm ==  for m=1,2,…n. 
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Assume that M wavelet bases (mother wavelet or scaling functions)  are required to expand the NARX model 

(8), and for convenience of representation also assume that the M wavelet bases are ordered according to a single 

index m, that is, , then (23) can be expressed as a linear-in-the-parameters form as below: M
mmW 1}{ == ψ

)()()(
1

tetty
M

m
mm +∑=

=
ψθ                                                                                                                    (24) 

which can be solved using linear regression techniques. Note that, the regressor family  might be 

redundant, since in practice it is usually true that the sampled data only form a sparse distribution in the input 

space. Consequently, the regression problem is often ill-posed and therefore some approaches should be 

employed to resolve this problem. It has been proven that the forward orthogonal least squares (OLS) method is 

an effective approach to solve this ill-posed problem (Billings et al. 1988, 1989, Korenberg et al. 1988, Chen et 

al. 1989). The regressor selection problem will be discussed in the next section.  

M
mmW 1}{ == ψ

    From (12), every waveletϕ , orthogonal or not, generates a wavelet series representation for any .  

From (14), the wavelet bases in the wavelet series representation (12) can be replaced by orthogonal scaling 

functions with a large resolution. This provides more freedom in the choice of basis functions in the wavelet 

series decomposition.  

)(2 RLf ∈

4.3    Expanding the functional components using multiresolution wavelets models  

Take the two-dimensional additive model (9) as an example. Following Wei et al. (2003), each functional 

component in the model (9) can be expanded into the truncated multiresolution wavelet decompositions as 

∑∑∑
≥

+=
1

11
))(())(())(( ,

)(
,,

)(
,

jj k
pkj

p
kjpkj

k

p
kjpp txtxtxf ϕβφα , np ,,2,1 L= ,                         (25) 

     ∑∑=
1 2

2212212
))(())(())(),(( ,,

)1)((
,;

k k
qkjpkj

pq
kkjqppq txtxtxtxf φφα

                                     ∑∑∑
≥

+
2 1 2

2121
))(())(( ,,

)1)((
,;

jj k k
qkjpkj

pq
kkj txtx ϕφβ

                                     ∑∑∑
≥

+
2 1 2

2121
))(())(( ,,

)2)((
,;

jj k k
qkjpkj

pq
kkj txtx φϕβ

 , ∑∑∑
≥

+
2 1 2

2121
))(())(( ,,

)3)((
,;

jj k k
qkjpkj

pq
kkj txtx ϕϕβ nqp ≤<≤1 .                              (26) 

Inserting Eqs (25) and (26) into (9) yields 
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which can be rearranged and converted into a linear-in-the-parameters problem in the form of (24) with respect 

to the wavelet coefficients ,  (p=1,2,…,n), and , ()(
,1

p
kjα )(

,1

p
kjβ )1)((

,; 212

pq
kkjα ))((

,; 21

ipq
kkjβ nqp ≤<≤1 , i=1,2,3). This can 

be solved using least squares type algorithms, which will be discussed in the next section.  

    Although many functions can be chosen as scaling and wavelet functions, most of these are not suitable in 

system identification applications, especially in the case of multidimensional and multiresolution expansions 

because of the curse-of-dimensionality. An implementation, which has been tested with very good results, 

involves B-spline and B-wavelet functions in multiresolution wavelet decompositions (Billings and Coca 1999, 

Liu et al. 2000, Coca and Billings 2001,Wei and Billings 2002). B-spline wavelets were originally introduced by 

Chui and Wang (1992) to define a class of semi-orthogonal wavelets. The reasons that make this implementation 

particularly suitable in system identification are summarized below: 

•   B-spline wavelets are piecewise polynomial functions, efficient algorithms for computing these functions and  

      their derivatives are available. 

•   B-spline wavelets have local support and provide near-optimal time-frequency localization.    

•   B-spline wavelets outperform other wavelet decompositions in terms of approximation rate .This means that  

      few resolution levels are required to approximate a function in order to achieve a given accuracy. Since each  

      extra level doubles the amount of computations, the choice of wavelet is clearly important. This   

      supports the key parsimony principle in system identification. 

•   B-spline wavelets are symmetric for even order m and anti-symmetric for odd order m, that is,  )(][ xmϕ

     , where [0, 2m-1] is the support of the B-spline wavelets .  In  )(][ xmϕ )12()1( ][ xmmm −−−= ϕ )(][ xmϕ

      application to signal analysis, it is very important for wavelet functions to possess the property of symmetry  

      and anti-symmetry. This is essential to avoid distortion in the reconstruction of compressed data (Chui 1992).  

For the definition of B-spline wavelets and more details about the properties of B-spline wavelets, see the work 

of Chui and Wang (Chui 1992, Chui and Wang 1992).    

4.4    Hybrid decomposition models 

It has been shown in subsections 4.1, 4.2 and 4.3 that each functional component in the NARX model (8) can be 

expressed using wavelet networks, wavelet series or multiresolution wavelet decompositions. Usually, all the 

functional components in the NARX model (8) are expanded using the same decomposition, for example, the 

super wavelet network where all the functional components in the NARX model (8) are expressed using the 

radial wavelet network with the same type of radial mother wavelet, or, the multiresolution wavelet model (27) 

where all the functional components are expressed using wavelet multiresolution decompositions with the same 

type of mother wavelet and scaling function. However, it should be pointed out that it is not necessary to require 

all the functional components be expressed using the same type of decomposition with the same mother wavelet. 
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In practice, different types of decompositions or different types of mother wavelets can be used simultaneously 

in a WANARX model, for example, 

•   Expand all the first-order (unvariate) functional components using wavelet multiresolution decompositions  

      based on a certain type of wavelet and scaling function, say the Haar wavelet (first-order B-spline wavelet)  

      and scaling function, and expand all the second-order(bivariate) functional components using wavelet  

      multiresolution decompositions based on another type of  wavelet and scaling function, say the 4th-order   

      B-spline wavelet and scaling function.   

•   Expand all the first-order (unvariate) functional components using wavelet multiresolution decompositions  

      and expand all the second-order (bivariate) functional components using wavelet series.   

The idea of using hybrid decomposition models is to sufficiently utilize the local properties of different types of 

basic wavelets or scaling functions simultaneously, and to remedy the weakness of one wavelet and/or scaling 

function with another. A hybrid decomposition model is often advantageous over a single decomposition model 

which use only a single type of mother wavelet or scaling function. 

4.4.1  Adaptive wavelet decompositions versus wavelet series and multiresolution wavelet decompositions  

As noted in the section 4.1, the wavelets used in adaptive wavelet decompositions (wavelet networks) should be 

explicitly expressible and differentiable. The gradients of the criterion function V, and thus the gradients for each 

of the wavelet functions should be calculated beforehand, and then Gauss-Newton type of optimisation methods 

such as steepest decent and stochastic gradient methods can be used to optimize the unknown parameters. Gauss-

Newton optimisation methods are often in some sense initial-condition dependent. When the number of 

parameters is large, the convergence rate will be very slow and a great number of iterations are required. In 

addition, these methods are apt to converge to local minimum. In general, therefore, the adaptive wavelet 

decomposition may not be suitable for high dimensional problems. 

Using wavelet series or multiresolution wavelet decompositions, the WANARX model (8) can be converted 

into a linear-in-the-parameters problem with respect to the corresponding wavelet coefficients. Notice, however, 

that the number of potential terms in the model might be very large, but a lot of the candidate terms may be 

redundant and should be removed from the model. The well known forward orthogonal least squares (OLS) 

algorithm (Billings et al. 1988, 1989, Korenberg et al. 1988, Chen et al. 1989), combined with the error 

reduction ratio (ERR) index, which measures the significance of each candidate model term, can be used to solve 

linear-in-the-parameters problems involving a great number of candidate terms which might possess severe 

redundancy. 

4.4.2  Radial wavelet networks versus compactly supported wavelet multiresolutoin decompositions 

Both radial wavelet networks (Zhang 1997) and multiresolution wavelet decomposition models (Billings and 

Coca 1999, Liu et al 2000, Coca and Billings 2001, Wei and Billings 2002) provide powerful representations for 

nonlinear systems. The model based on the radial wavelet frame (19), or the fixed grid wavelet network, 

resembles in effect the well known radial basis function (RBF) networks in structure with the Gaussian or thin-

spline functions replaced by radial wavelets, which can generate single scaling wavelet frames. The main 

advantage of the decomposition based on the radial wavelet frame (19) is that the radial construction often leads 

to a smaller number of candidate regressors (model terms) compared with the multiresolution wavelet 
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decompositions where the compactly supported tensor product wavelets are used. Comparing the multiresolution 

wavelet models with the radial wavelet networks in detail, the following differences are worth noting:    

    i) The compactly supported wavelet basis functions, for example, the B-spline wavelet and scaling functions 

considered in this study, define a hierarchical multiresolution structure with fixed and regular dilation-translation 

sampling. Thus the location and scale of each basis function is known beforehand (see sections 6.2 and 6.3 for 

details). In radial wavelet networks, however, the basis functions have to be defined by means of a separate 

approach, for example, to check the value of each radial wavelet with respect to all the process sampling points.     

ii)  In the compactly supported wavelet multiresolutoin model, it is not required that every regressor (model 

term) include all the process variables as in a radial wavelet network. This allows more flexibility in selecting the 

correct model structure and avoids model over-fitting. 

iii)  B-spline wavelets are compactly supported. Thus, at a given resolution scale, the number of B-spline 

wavelets is deterministic. In fact, at each resolution level only the B-spline wavelets which cover the data 

domain need to be considered. This means that a limited number of B-spline wavelets need to be considered in 

the truncated multiresolution wavelet model and these are determined by the lowest and the highest resolution 

scales. Although almost all radial wavelet functions are nearly compactly supported, they only vanish rapidly as 

the independent variables of these functions are far from the centre. In practice, radial wavelets are usually 

truncated so that the wavelet support overlaps with the data domain. However, the truncation of the wavelet 

support might deteriorate the natural approximation property of wavelets.       

5.     System variable selection and model term (wavelet regressor) determination                                

Variable and term selection are generic problems in nonlinear system identification. Once the significant 

variables have been selected, the model terms can be determined using a term selection algorithm operating over 

the selected variables, a parsimonious model structure can then be identified from the candidate model set, and 

finally the parameters can be estimated based on this model structure. 

5.1    System variable selection 

The first problem encountered in WANARX modelling is how to determine which variables should be included 

in the model. It is often the case in practice that some of the variables ,  are redundant and only a 

subset of these variables is significant. Inclusion of redundant variables might result in a much more complex 

model since the number of model terms increases dramatically with the number of variables. Furthermore, 

including redundant variables might lead to a large number of free parameters in the model, and as a 

consequence the model may become oversensitive to training data and is likely to exhibit poor generalisation 

properties. Therefore, it is important to determine which variables should be included in the model.  

,1x 2x ,L nx

The purpose of variable selection is to pre-select a subset consisting of the significant variables or to eliminate 

redundant variables from all the candidate variables of a system under study prior to model term detection. It is 

required that the selected significant variables alone should sufficiently represent the system. Based on these 

observations, a new effective variable selection algorithm (Wei et al. 2004), has been proposed and can be used 

to select significant variables prior to fitting a WANARX model.  
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5.2    Model term determination 

As explained in Section 4, the truncated regular wavelet frame, wavelet series and multiresolution wavelet 

decompositions can be converted into a linear-in-the-parameters form    

)()()(
1

tetpty
M

m
mm +=∑

=

θ                                                                                                                     (28) 

where (m=1,2,…,M) are regressors (model terms) produced by the dilated and translated versions of 

mother wavelets or scaling functions, which are in the dictionary considered.  Generally, not all the model terms 

make an equal contribution to the system output and terms, which make little contribution can be omitted. A 

parsimonious representation, which contains only the significant terms, can often be obtained without the loss of 

representational accuracy by eliminating the redundant terms. Define 

)(tpm

},,2,1   ;1:{)( mkMipP ki
m

k
L=≤≤= ,   m=1,2, …, M,                                                            (29) 

The model term selection procedure is in fact an iterative process which searches through a nested term set in the 

sense that  

LL ⊂⊂⊂⊂ )()2()1( mPPP                                                                                                             (30) 

This makes both the complexity and the accuracy of the representation based on these term sets to increase until 

a suitable term set is found, i.e., there exists  an integer (generally0M MM <<0 ), such that the model  

                                                                                                                     (31) )()()(
0

1

tetpty
M

k
ii kk

+=∑
=

θ

provides a satisfactory representation over the range considered for the measured input-output data. 

A fast and efficient model structure determination approach has been implemented using the forward 

orthogonal least squares (OLS) algorithm and the error reduction ratio (ERR) criterion, which was originally 

introduced to determine which terms should be included in a model(Billings et al. 1988, 1989, Korenberg et al. 

1988, Chen et al. 1989). This approach has been extensively studied and widely applied in nonlinear system 

identification (see, for example, Chen et al. 1991, Wang and Mendel 1992, Zhu and Billings 1996, Zhang 1997, 

Hong and Harris 2001). The forward OLS algorithm involves a stepwise orthogonalization of the regressors and 

a forward selection of the relevant terms in (28) based on the error reduction ratio (ERR) (Billings et al. 1988, 

1989).  

6.    Some practical issues associated with implementation   

Emphasis is concentrated on wavelet series and multiresolution decompositions, and it is assumed that some 

compactly supported wavelets or/and scaling functions are considered in these decompositions. Some practical 

issues including data normalization, highest resolution level determination, translation parameter selection and 

wavelet dictionary determination are considered.  

6.1   Data pre-processing   

The original observational data are often normalized into a standard domain, 

for example the unit hypercube , for the convenience of problem description. This is especially true when 

T
n txtxtxtx )](~,),(~),(~[)(~

21 L=

n]1 ,0[
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a compactly supported wavelet and/or a scaling function are chosen in the wavelet series (12) or (14), and the 

multiresolution decomposition (13). Taking the univariate Haar wavelet (the first-order B-spline wavelet) as an 

example, it is much easier to select the starting resolution level and the range of the shift parameters if the 

sample data has been normalized to [0, 1]. 

Assume that the initial observations nRx ∈~  fall into the finite hypercube , ],[],[],[ 2211 nn bababa L××

)(~ tx can be normalized into the unit hypercube by means of the following simple linear transform n]1 ,0[

)/())(~()( iiiii abatxtx −−= , .  ni ,,2,1 L=

By another transform, )/()]()(~2[)( iiiiii ababtxtx −+−= , ni ,,2,1 L= , the original data can be 

normalized into the standard hypercube . 

x~

n]1 ,1[−

The modelling can then be performed in the standard hypercube  or , and the model output can 

then be recovered to the original system operating domain by taking the inverse transform which converts 

n]1 ,0[ n]1 ,1[−
x  

back into x~ .      

6.2   Determination of the highest resolution level       

In theory, the wavelet series (12) and the multiresolution wavelet decomposition (13) are infinite expansions. In 

practice, however, it is impossible to include infinite terms in these wavelet decompositions. Therefore, the 

infinite decompositions are always truncated at appropriate dilations (resolutions) and translations.  

Consider the one-dimensional multiresolution wavelet decomposition (13) and assume that  the function 

 is defined in [0, 1] and )(xf x is an independent variable which is uniformly distributed in , that is, ]1,0[ x  

itself can be considered as “time”, then the basis functions (dilated and translated versions of the wavelet and 

scaling function) in the multiresolution wavelet decomposition (13) are mutually orthogonal and the 

decomposition is unique. Assume also that the Haar wavelet (the first-order B-spline wavelet) and scaling 

function are used in the decomposition, then a truncated decomposition with the initial resolution scale j0 and the 

highest resolution scale jmax=J can be expressed as 
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,, )()()( ϕβφα                                                                               (32) 

Clearly, the higher the upper resolution scale level J, the more accurate the approximation is. A recommended 

approach for selecting the highest scale J is to utilize the features of the sampled signal, for example, the natural 

frequency of the signal to be approximated. Assume that the maximum natural frequency of the sampled signals 

is , the highest scale can be empirically chosen asmaxf )]([log max2max Mfj = , where M is a positive number, 

say between and , and  denotes taking the integer value of the corresponding number (Wei and Billings 

2002). 

42 62 ][ ⋅

In practical identification problems, however, the orthogonality of the mutiresolution wavelet decomposition 

might be lost, since most observational data fail to satisfy the uniform distribution assumption. Also in 

dynamical system modelling, the variablex  in (32) is usually dependent on time t, and  often represents  

lagged outputs y(t-p)( ) or lagged inputs u(t-q) (

)(tx

ynp ,,2,1 L= unq ,,2,1 L= ), which are usually sparse in the 
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normalized interval [0, 1].   The empirical rule )]([log max2max Mfj =  for selecting the highest resolution 

scale can however still be used. 

6.3   Shift parameter selection       

For a compactly supported wavelet, the shift parameter k is determined by the corresponding resolution scale j. 

For example, at a given scale j, the shift parameter k in the Haar wavelet multiresolution decomposition (32) is 

chosen as (j=0,1,…). Generally, for a compactly supported wavelet 12,,1,0 −= jk L )(xϕ  with an integer 

support , where  is integer, the support for the dilated and translated wavelet 

 is , therefore, the shift parameter k at a resolution scale j 

should be taken as . This is also true for a compactly supported scaling function 

],0[ sKS =ϕ sK

)2(2)( 2/
, kxx jj
kj −=ϕ )](2  ,2[ kKk s

jj +−−

12)1( −≤≤−− j
s kK )(xφ .   

6.4   Wavelet dictionary determination       

Taking the truncated wavelet series (23) and the truncated mutiresolution wavelet decomposition (27) as an 

example. The elements of the wavelet dictionary are defined as the wavelet bases (dilated and translated versions 

of wavelets and scaling functions) involved in the decompositions. The number of all the dilated and translated 

versions of wavelets and/or scaling functions is defined as the length of the wavelet dictionary. The model terms 

in the approximation expressions are produced by some of the elements of the wavelet dictionary. Clearly, once 

the mother wavelets and/or scaling functions have been chosen, the wavelet dictionary is determined by the 

resolution scale parameter j and the shift parameter k.  For compactly supported wavelets and scaling functions, 

the wavelet dictionary depends upon the initial resolution scale  and the highest resolution scale .  

Therefore, it is important to choose appropriate values for the initial resolution scale  and the highest 

resolution scale , since these values determine the degree of the complexity of the wavelet dictionary 

whatever types of wavelets are used.  Theoretically, for a given initial resolution scale , the higher the upper 

resolution scale level , the more accurate the approximation is, however this may result in a more complex 

wavelet dictionary and thus a more complex decomposition, since too much resolution might result in a severely 

redundant wavelet dictionary or an over-fitted model.  

minj maxj

minj

maxj

minj

maxj

In practice, for dynamical systems identification, the variable x in the wavelet function )(, xkjϕ  and the 

scaling function )(xφ is usually the lagged system inputs or/and outputs, and the observations of  are often 

sparsely distributed and therefore the problem can be ill-posed.  This can produce a wavelet dictionary and the 

candidate model terms (regressors) that are redundant. However, the redundancy problem can be solved and the 

significant terms can be detected using a term detection algorithm.  

)(tx
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7.   Examples 

In this section, two examples are provided to illustrate the application of the WANARX modelling structure. The 

input-output data used for identification in the first example are simulated from a nonlinear system with a known 

model; it is assumed, however, that no a priori information is available. The second example involves a real 

system and the measurements taken from satellite data, correspond to the solar wind parameter VBs (input) and 

the Dst index (output) for this terrestrial magnetospheric dynamic system. 

7.1   Example 1—a nonlinear system disturbed by noise       

Consider the following model 

)()1(
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)1(5.0
)(

22
ttu

tu

tuty

ty

ty
ty ξ+−+

−+
−−

−
−+
−+

=                                                                 (33) 

where is an impulse sequence with random amplitude and random duration , )(tu )(tA )(tΔ 19)(5 ≤≤ tA , 

;40)(1 ≤Δ≤ t )(tξ  is a noise sequence obeying a normal distribution with a standard derivation =0.0025. 

A data set consisted of 1000 input-output samples, which are illustrated in Figure 1, was generated by simulating 

the system. The data set was divided into two parts: the first 500 samples (from 1 to 500) were used for 

identification and the second part (from 501 to 1000) was used for testing.    

2
ξσ

The aim of the identification was to fit a WANARX model to describe the relationship between the input and 

output. The first step is to determine the significant variables which can sufficiently describe the relationship 

between the input and output. The variable selection algorithm of Wei et al. (2004) was applied and the three 

significant variables: {y(t-1), y(t-2), u(t-1)} were selected. A one-dimensional WANARX model was therefore 

selected for this system 

            )())1(),2(),1(()( tetutytyfty +−−−=  

)())1(())2(())1(( 321 tetuftyftyf +−+−+−=                                                                (34) 

Expanding each  using the multiresolution wavelet decomposition (13), gives  )(⋅if
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txtxtxf ϕβφα ,  3,2,1=i ,                                             (35) 

where , ,)1()(1 −= tytx )2()(2 −= tytx )1()(3 −= tutx ; the 4th-order B-spline wavelet and scaling function 

were used in this decompostion, thus and }0,1,2,3{0 −−−=K ,1,,5,6{ −−−= LjK }12,,1,0 −jL for j=0,1,2,3,4.  

Although 195 basis functions (model terms) are involved in the one-dimensional WANARX model, only 13 of 

these were selected to be significant using the forward OLS algorithm. The final model contained only 13 terms 

(basis functions), which are listed in Table 1. A comparison of the model predicted outputs and the 

measurements, along with the model prediction errors over the test set, are shown in Figure 2. The model 

predicted output (MPO) of an identified NARX model is defined as 

))(,),1(),(ˆ,),1(ˆ()(ˆ uympompompo ntutuntytyfty −−−−= LL                                                (36) 
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The model predicted outputs are recursively estimated and are used to calculate the model prediction errors 

)(ˆ)()(ˆ tytyte mpo−=                                                                                                                             (37) 

where (t=1,2,…,N) are the system measurements. )(ty

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  The system input and output  for Example 1. (a) Input; (b) Output.  
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Figure 2   The model predicted output (MPO) and the model prediction errors for Example 1 over the test set, points 500-
1000 only.  (a) Comparison of model predicted outputs and the measurements; (b) Model prediction errors.  ( In (a), the solid 
line denotes the measurements, and the dashed line denotes the model predicted outputs.) 
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Table 1 The basis functions, parameters and the corresponding error reduction ratios for Example 1. 

Search steps Model terms Parameters ERRs  %100×
1 ))1((1,0 −− tuφ  1.15884E+000 94.55335 

2 ))1((0,0 −tuφ  1.48091E+000 3.29547 

3 ))2((1,0 −− tyϕ  -5.26563E-001 2.10644 

4 ))2((2,0 −− tyϕ  1.33708e-001 0.01691 

5 ))1((4,0 −− tuϕ  5.43449E+000 0.00432 

6 ))2((3,1 −− tyϕ  1.93749E-002 0.00730 

7 ))1((3,1 −− tyϕ  -6.62867E-002 0.00205 

8 ))2((1,1 −− tyϕ  -2.83083E-002 0.00151 

9 ))1((1,3 −− tyϕ  6.52100E-003 0.00077 

10 ))2((4,2 −− tyϕ  6.14276E+000 0.00047 

11 ))1((4,1 −− tuϕ  1.80645E-002 0.00049 

12 ))1((3,3 −− tuϕ  1.87050E-002 0.00069 

13 ))2((3,3 −− tyϕ  1.71538E-001 0.00049 

           Note:                 — the 4th-order B-splne functions; )2(2)( 2/
, kxx jj
kj −= φφ

                                     — the 4th-order B-splne wavelets. )2(2)( 2/
, kxx jj
kj −= ϕϕ

 

7.2   Example 2—a terrestrial magnetosphere dynamic system 

The sun is a source of a continuous flow of charged particles, ions and electrons called the solar wind. The 

terrestial magnetic field shields the Earth from the solar wind, and forms a cavity in the solar wind flow that is 

called the terrestrial magnetosphere. The magnetopause is a boundary of the cavity, and its position on the day 

side (sunward side) of the magnetosphere can be determined as the surface where there is a balance between the 

dynamic pressure of the solar wind outside the magnetosphere and the pressure of the terrestrial magnetic field 

inside. A complex current system exists in the magnetosphere to support the complex structure of the 

magnetosphere and the magnetopause. Changes in the solar wind velocity, density or magnetic field lead to 

changes in the shape of the magnetopause and variations in the magnetospheric current system. In addition if the 

solar wind magnetic field has a component directed towards the south a reconnection between the terrestrial 

magnetic field and the solar wind magnetic field is initiated. Such a reconnection results in a very drastic 

modification to the magnetospheric current system and this phenomenon is referred to as magnetic storms. 

During a magnetic storm, which can last for hours, the magnetic field on the Earth’s surface will change as a 

result of the variations of the magnetospheric current system. Changes in the magnetic field induce considerable 

currents in long conductors on the terrestrial surface such as power lines and pipe-lines. Unpredicted currents in 

power lines can lead to blackouts of huge areas, the Ontario Blackout is just one recent example. Other 

undesirable effects include increased radiation to crew and passengers on long flights, and effects on 
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communications and radio-wave propagation. Forecasting geomagnetic storms is therefore highly desirable and 

can aid the prevention of such effects. The Dst index is used to measure the disturbance of the geomagnetic field 

in the magnetic storm. Numerous studies of correlations between the solar wind parameters and magnetospheric 

disturbances show that the product of the solar wind velocity V and the southward component of the magnetic 

field, quantified by Bs, represents the input that can be considered as the input to the magnetosphere. Denote the 

multiplied input by VBs. 

Figure 3 shows 1000 data points of measurements recorded from satellites, of the solar wind parameter VBs 

(input) and the Dst index (output)  with a sample period T=1hour. The purpose here is to identify a nonlinear 

model to represent the input-output relationship between VBs (input) and Dst. The effects of other inputs on the 

system will be neglected in the present study. A variable selection  algorithm of Wei et al. (2004) was applied 

and nine significant variables, {y(t-1), y(t-2),  y(t-3), y(t-4), y(t-5), y(t-6), y(t-7), u(t-1), u(t-2)} were selected. 

These nine variables are used to form a hybrid WANARX model for the data set  

              )())2(),1(),7(,),2(),1(()( tetututytytyfty +−−−−−= L  
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where  for i=1,2,…,7 and )()( itytxi −= )7()( +−= itutxi  for i=8,9,  and  are unknown univariate 

and bivariate functions which can be approximated by one- and two-dimensional wavelet decompositions. In this 

example, both the input and output data points were initially normalized and the modelling procedure was 

performed on the standard hypercube , where n =9. The first 500 input-output data points were used for 

model identification and the remaining 500 data points were used for testing. By expanding each  and  

using the wavelet series decomposition (14), where the 4th-order B-spline scaling functions were used in each 

decomposition, the model (38) was then converted into a linear-in-the-parameters problem and this was then 

estimated using the forward OLS-ERR algorithm (Billings et al. 1988, 1989, Korenberg et al. 1988, Chen et al. 

1989). The final identified model, which involved 16 regressors selected from 891 candidate terms, was of the 

form 

if ijf

n]1 ,0[

if ijf

∑
=

+−=
16

2
1 )()1()(

i
ii tBtyty θθ                                                                                                               (39) 

where (i=2,3, …,16) are wavelet regressors formed by the 4th-order B-spline scaling functions, and)(tBi iθ  

(i=1,2,…,16) are the parameters. The terms, parameters and corresponding ERR values are listed in Table 2.  

Notice again that each variable in the model (38) and (39) was initially normalized to , and the model 

outputs were recovered to the original system operating domain by taking inverse transforms.  

]1 ,0[

    In practice the one-step-ahead (one-hour-ahead) predictions for the Dst index are not useful, since it is difficult 

during a few minutes to collect all data from both satellite measurements and ground based magnetometers and 

to feed them into the model (39) to obtain predictions. On the other hand, forecasting the Dst index several 

months ahead of the real measurements is not required. To be practically useful, the predictions should be made 
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on some time scale which is intermediate between the two extreme cases. A 12-hour-ahead prediction based on 

(39) is considered here. The comparisons between the 12-step-ahead predictions, the model predicted outputs 

and the measurements are shown in Figure 4. As expected the model predicted outputs are not as good as the 12-

step-ahead predictions, but the model predicted outputs provide good long term predictions and give confidence 

in the identified model. The discrepancy between the model predicted outputs and the measured values of the 

Dst index are believed to be the result of other inputs which affect the system output but were not included in the 

current model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  The input and output data of the terrestrial magnetospheric dynamic system in Example 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4  Comparisons of the six-step-ahead predictions, model predicted outputs and the measurement for the solar wind Dst 
index in Example 2, over the test set, points 500-1000. (a) 12-step-ahead predictions; (b) Model predicted outputs.  ( Solid—
measurements; Dashed—12-step-ahead predicted outputs;  Dotted—model predicted outputs) 
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Table 2  The selected model terms, estimated parameters and the corresponding ERR values for the system in Example 2 

Number )(tBi  iθ  %100×iERR  

1 )1( −ty  6.10269e-001 95.65172 

2 ))1(())1(( 2,01,0 −− −− tuty φφ  6.39257e-001 2.06315 

3 ))1((17,5 −tuφ  2.17571e-003 1.02247 

4 ))6(())5(( 0,03,0 −−− tyty φφ  -4.09044e+001 0.41470 

5 ))2(())7(( 0,00,0 −− tuty φφ  7.36766e+001 0.09880 

6 ))1((19,5 −tuφ  4.01684e-002 0.02400 

7 ))2(())1(( 0,00,0 −− tutu φφ  -4.50903e+001 0.00962 

8 ))1((18,5 −tuφ  -5.89649e-002 0.00300 

9 ))1((16,5 −tuφ  -4.60957e-002 0.00368 

10 ))1((13,5 −tuφ  -4.82462e-002 0.00308 

11 ))2(())2(( 0,00,0 −− tuty φφ  -5.93993e+001 0.00746 

12 ))7((16,5 −tyφ  6.68900e-003 0.00343 

13 ))3(())2(( 3,00,0 −− − tyty φφ  5.40887e+000 0.00327 

14 ))1((14,5 −tuφ  1.51620e-002 0.00328 

15 ))4(())3(( 2,00,0 −− − tyty φφ  -6.02775e+000 0.00223 

16 ))4(())2(( 2,00,0 −− − tyty φφ  2.87946e+000 0.00345 

      Note:          — the 4th-order B-spline scaling functions )2(2)( 2/
, kxx jj
kj −= φφ

8.   Conclusions 

A unified wavelet-based NARX model structure, which incorporates wavelet networks, wavelet series and 

wavelet mutiresolution decompositions, has been introduced for nonlinear input-output system identification. 

The new WANARX model structure allows high-order nonlinear systems to be expressed as a sum of additive 

low-dimensional submodels. This in some sense partially alleviates the difficulty of the curse-of-dimensionality 

for high-order nonlinear system modelling. The new identification algorithm is more constructive and 

transparent compared with most of the existing modelling approaches such as traditional neural networks and 

radial basis function networks in the sense that the new algorithm automatically detects the model terms and 

estimates the parameters simultaneously, and finally provides a transparent parsimonious model. The new 

algorithm is also more flexible in the sense that it can be used to identify arbitrary severely nonlinear systems, 

even systems with discontinuities and jumps, owing to the inherent time-frequency property of wavelets.  

In the literature two classes of wavelet-based modelling algorithms have been proposed for nonlinear system 

identification, these include wavelet networks and additive models of univariate functions with respect to 

multiresolution decompositions. In wavelet networks, the basis functions are often chosen to be radial wavelet 

functions, which can generate single scaling wavelet frames but which generally require that every regressor 

(model terms) are included in all the process variables. Most radial wavelets are infinitely supported and should 

be truncated so that the wavelet support overlaps within the data domain. Although these features of wavelet 
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networks may involve a relatively small number of candidate regressors, it follows that these features might also 

lead to a deterioration of the natural approximation properties of wavelets and this suggests that wavelet 

networks will be more liable to over-fitting. The new identification algorithm proposed in this study, however, 

overcomes the drawbacks associated with radial wavelets by introducing a semi-orthogonal multiresolution 

wavelet decomposition structure based on B-spline wavelets as discussed in Section 4.     

Additive submodels of univariate functions with respect to multiresolution decompositions are simple and 

generally involve a small number of candidate regressors. However, these models may sometimes not be able to 

effectively describe severe nonlinearities of complex systems. This motivates the introduction of the expressions 

of additive submodels of multivariate functions with respect to multiresolution decompositions as proposed in 

this study. Every functional component in each of the additive submodels can be decomposed using wavelet 

frame decompositions, wavelet series or wavelet multiresolution decompositions. An emphasis in the present 

study has been to focus on wavelet series and multiresolution wavelet decompositions, and the semi-orthogonal 

multiresolution wavelet decomposition structure based on B-spline wavelets which was recommended as a 

powerful approximation approach for a wide range of nonlinear systems. By expanding each functional 

component in the WANARX model using multiresolution wavelet decompositions, the model identification and 

parameter estimation problem can be converted into a linear-in-the-parameters problem.  

The main disadvantage of the new wavelet based modelling approach is that a large number of candidate 

wavelet basis functions might be involved in the initial wavelet models for a high-dimensional system with 

several variables (large time lags for the system input and/or system output). Fortunately, this problem can be 

successfully resolved by employing an iterative model structure detection procedure coupled with the forward 

OLS-ERR algorithm which can efficiently select the significant model terms and estimate the parameters 

simultaneously. 

Problems which need to be considered further include how to determine the highest order of the submodels 

(multivariate functional components), and how to choose the highest resolution scale for wavelet decompositions. 

For a high-dimensional system with several variables (or with many lagged inputs and/or outputs of the system), 

these two factors will dramatically affect the number of candidate model terms in the initial wavelet models. An 

effective and/or possible automatic way of determining these two factors is an important topic for future study 

and applications. 
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