53 research outputs found
Nano-Fe3O4/O2: Green, Magnetic and Reusable Catalytic System for the Synthesis of Benzimidazoles
Magnetic nano-Fe3O4 was applied in the presence of atmospheric air as a green, efficient, heterogeneous and reusable catalytic system for the synthesis of benzimidazoles via the reactions of o-phenylenediamine (1 eq) with aryl aldehydes (1 eq) in excellentyields (85–97 %) and short reaction times (30–100 min) with a proposed mechanism.Keywords: Benzimidazole, benzene-1,2-diamine, aldehyde, nano-Fe3O4, heterogeneous catalyst, magnetite, O
Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor
The realization of a scalable quantum information processor has emerged over
the past decade as one of the central challenges at the interface of
fundamental science and engineering. Much progress has been made towards this
goal. Indeed, quantum operations have been demonstrated on several trapped ion
qubits, and other solid-state systems are approaching similar levels of
control. Extending these techniques to achieve fault-tolerant operations in
larger systems with more qubits remains an extremely challenging goal, in part,
due to the substantial technical complexity of current implementations. Here,
we propose and analyze an architecture for a scalable, solid-state quantum
information processor capable of operating at or near room temperature. The
architecture is applicable to realistic conditions, which include disorder and
relevant decoherence mechanisms, and includes a hierarchy of control at
successive length scales. Our approach is based upon recent experimental
advances involving Nitrogen-Vacancy color centers in diamond and will provide
fundamental insights into the physics of non-equilibrium many-body quantum
systems. Additionally, the proposed architecture may greatly alleviate the
stringent constraints, currently limiting the realization of scalable quantum
processors.Comment: 15 pages, 6 figure
Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work?
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as �S-layer� bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines. © 2018 Elsevier Inc
Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work?
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as �S-layer� bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines. © 2018 Elsevier Inc
Optimierung des Konzeptes fuer Bergbau und Aufbereitung der Chen Menshna Kupferlagerstaette. Zeichnungen Hydrologie und Bergbau
SIGLETIB Hannover: FR 2359(Anl3) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Optimierung des Konzeptes fuer Bergbau und Aufbereitung der Chen Menshna Kupferlagerstaette. Anlagenband 1
SIGLETIB Hannover: FR 2359(Anl1) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection
Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nanoparticles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests. © 2017 Elsevier B.V
- …