108 research outputs found

    Understanding Cutting Planes for QBFs

    Get PDF
    We define a cutting planes system CP+8red for quantified Boolean formulas (QBF) and analyse the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes is of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: while CP+8red is again weaker than QBF Frege and stronger than the CDCL-based QBF resolution systems Q-Res and QU-Res, it turns out to be incomparable to even the weakest expansion-based QBF resolution system 8Exp+Res. Technically, our results establish the effectiveness of two lower boun

    Feasible Interpolation for QBF Resolution Calculi

    Get PDF
    In sharp contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. In this paper we establish the feasible interpolation technique for all resolution-based QBF systems, whether modelling CDCL or expansion-based solving. This both provides the first general lower bound method for QBF proof systems as well as largely extends the scope of classical feasible interpolation. We apply our technique to obtain new exponential lower bounds to all resolution-based QBF systems for a new class of QBF formulas based on the clique problem. Finally, we show how feasible interpolation relates to the recently established lower bound method based on strategy extraction

    Are Short Proofs Narrow? QBF Resolution is not so Simple

    Get PDF
    The ground-breaking paper “Short Proofs Are Narrow -- Resolution Made Simple” by Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another important measure for resolution is space, and in their fundamental work, Atserias and Dalmau (J. Comput. Syst. Sci. 2008) show that lower bounds for space again can be obtained via lower bounds for width. In this article, we assess whether similar techniques are effective for resolution calculi for quantified Boolean formulas (QBFs). There are a number of different QBF resolution calculi like Q-resolution (the classical extension of propositional resolution to QBF) and the more recent calculi ∀Exp+Res and IR-calc. For these systems, a mixed picture emerges. Our main results show that the relations both between size and width and between space and width drastically fail in Q-resolution, even in its weaker tree-like version. On the other hand, we obtain positive results for the expansion-based resolution systems ∀Exp+Res and IR-calc, however, only in the weak tree-like models. Technically, our negative results rely on showing width lower bounds together with simultaneous upper bounds for size and space. For our positive results, we exhibit space and width-preserving simulations between QBF resolution calculi

    Comparing axiomatizations of free pseudospaces

    Get PDF
    Independently and pursuing different aims, Hrushovski and Srour (On stable non-equational theories. Unpublished manuscript, 1989) and Baudisch and Pillay (J Symb Log 65(1):443–460, 2000) have introduced two free pseudospaces that generalize the well know concept of Lachlan’s free pseudoplane. In this paper we investigate the relationship between these free pseudospaces, proving in particular, that the pseudospace of Baudisch and Pillay is a reduct of the pseudospace of Hrushovski and Srour

    Dependency Schemes in QBF Calculi: Semantics and Soundness

    Get PDF
    We study the parametrisation of QBF resolution calculi by dependency schemes. One of the main problems in this area is to understand for which dependency schemes the resulting calculi are sound. Towards this end we propose a semantic framework for variable independence based on ‘exhibition’ by QBF models, and use it to express a property of dependency schemes called full exhibition that is known to be sufficient for soundness in Q-resolution. Introducing a generalised form of the long-distance resolution rule, we propose a complete parametrisation of classical long-distance Q-resolution, and show that full exhibition remains sufficient for soundness. We demonstrate that our approach applies to the current research frontiers by proving that the reflexive resolution path dependency scheme is fully exhibited

    Lower bounds: from circuits to QBF proof systems

    Get PDF
    A general and long-standing belief in the proof complexity community asserts that there is a close connection between progress in lower bounds for Boolean circuits and progress in proof size lower bounds for strong propositional proof systems. Although there are famous examples where a transfer from ideas and techniques from circuit complexity to proof complexity has been effective, a formal connection between the two areas has never been established so far. Here we provide such a formal relation between lower bounds for circuit classes and lower bounds for Frege systems for quantified Boolean formulas (QBF). Starting from a propositional proof system P we exhibit a general method how to obtain a QBF proof system P+∀red{P}, which is inspired by the transition from resolution to Q-resolution. For us the most important case is a new and natural hierarchy of QBF Frege systems C-Frege+∀red that parallels the well-studied propositional hierarchy of C-Frege systems, where lines in proofs are restricted to belong to a circuit class C. Building on earlier work for resolution [Beyersdorff, Chew and Janota, 2015a] we establish a lower bound technique via strategy extraction that transfers arbitrary lower bounds for the circuit class C to lower bounds in C-Frege+∀red. By using the full spectrum of state-of-the-art circuit lower bounds, our new lower bound method leads to very strong lower bounds for QBF \FREGE systems: 1. exponential lower bounds and separations for the QBF proof system ACo[p]-Frege+∀red for all primes p; 2. an exponential separation of ACo[p]-Frege+∀red from TCo/d-Frege+∀red; 3. an exponential separation of the hierarchy of constant-depth systems ACo/d-Frege+∀red by formulas of depth independent of d. In the propositional case, all these results correspond to major open problems

    Lifting QBF Resolution Calculi to DQBF

    Get PDF
    We examine the existing resolution systems for quantified Boolean formulas (QBF) and answer the question which of these calculi can be lifted to the more powerful Dependency QBFs (DQBF). An interesting picture emerges: While for QBF we have the strict chain of proof systems Q-Res < IR-calc < IRM-calc, the situation is quite different in DQBF. Q-Res and likewise universal resolution are too weak: they are not complete. IR-calc has the right strength: it is sound and complete. IRM-calc is too strong: it is not sound any more, and the same applies to long-distance resolution. Conceptually, we use the relation of DQBF to EPR and explain our new DQBF calculus based on IR-calc as a subsystem of first-order resolutio

    Shortening QBF Proofs with Dependency Schemes

    Get PDF
    We provide the first proof complexity results for QBF dependency calculi. By showing that the reflexive resolution path dependency scheme admits exponentially shorter Q-resolution proofs on a known family of instances, we answer a question first posed by Slivovsky and Szeider in 2014 [30]. Further, we conceive a method of QBF solving in which dependency recomputation is utilised as a form of inprocessing. Formalising this notion, we introduce a new calculus in which a dependency scheme is applied dynamically. We demonstrate the further potential of this approach beyond that of the existing static system with an exponential separation

    The complexity of reasoning for fragments of default logic

    Get PDF
    Default logic was introduced by Reiter in 1980. In 1992, Gottlob classified the complexity of the extension existence problem for propositional default logic as Σ -complete, and the complexity of the credulous and skeptical reasoning problem as Σ -complete, respectively Π -complete. Additionally, he investigated restrictions on the default rules, i.e. semi-normal default rules. Selman used in 1992 a similar approach with disjunction-free and unary default rules. In this article, we systematically restrict the set of allowed propositional connectives. We give a complete complexity classification for all sets of Boolean functions in the meaning of Post's lattice for all three common decision problems for propositional default logic. We show that the complexity is a hexachotomy (Σ -, Δ -, NP-, P-, NL-complete, trivial) for the extension existence problem, while for the credulous and skeptical reasoning problem we obtain similar classifications without trivial cases
    • 

    corecore