167 research outputs found

    Polynomial Solutions of Shcrodinger Equation with the Generalized Woods Saxon Potential

    Full text link
    The bound state energy eigenvalues and the corresponding eigenfunctions of the generalized Woods Saxon potential are obtained in terms of the Jacobi polynomials. Nikiforov Uvarov method is used in the calculations. It is shown that the results are in a good agreement with the ones obtained before.Comment: 14 pages, 2 figures, submitted to Physical Review

    Exact Solutions of the Duffin Kemmer Petiau Equation for the Deformed Hulthen Potential

    Full text link
    Using the Nikiforov Uvarov method, an application of the relativistic Duffin Kemmer Petiau equation in the presence of a deformed Hulthen potential is presented for spin zero particles. We derived the first order coupled differential radial equations which enable the energy eigenvalues as well as the full wavefunctions to be evaluated by using of the Nikiforov Uvarov method that can be written in terms of the hypergeometric polynomials.Comment: 8 pages. submitted to Physica Script

    Exact solutions of the Schrodinger equation with non central potential by Nikiforov Uvarov method

    Full text link
    The general solutions of Schrodinger equation for non central potential are obtained by using Nikiforov Uvarov method. The Schrodinger equation with general non central potential is separated into radial and angular parts and energy eigenvalues and eigenfunctions for these potentials are derived analytically. Non central potential is reduced to Coulomb and Hartmann potential by making special selections, and the obtained solutions are compared with the solutions of Coulomb and Hartmann ring shaped potentials given in literature.Comment: 12 pages. submitted to Journal of Physics A: Math. and Ge

    Systematical Approach to the Exact Solution of the Dirac Equation for A Special Form of the Woods-Saxon Potential

    Get PDF
    Exact solution of the Dirac equation for a special form of the Woods-Saxon potential is obtained for the s-states. The energy eigenvalues and two-component spinor wave functions are derived by using a systematical method which is called as Nikiforov-Uvarov. It is seen that the energy eigenvalues strongly depend on the potential parameters. In addition, it is also shown that the non-relativistic limit can be reached easily and directly.Comment: 10 pages, no figures, submitted for Publicatio

    A search on the Nikiforov-Uvarov formalism

    Full text link
    An alternative treatment is proposed for the calculations carried out within the frame of Nikiforov-Uvarov method, which removes a drawback in the original theory and by pass some difficulties in solving the Schrodinger equation. The present procedure is illustrated with the example of orthogonal polynomials. The relativistic extension of the formalism is discussed.Comment: 10 page

    Effective Mass Dirac-Morse Problem with any kappa-value

    Full text link
    The Dirac-Morse problem are investigated within the framework of an approximation to the term proportional to 1/r21/r^2 in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any κ\kappa-value. It is also studied the approximate energy eigenvalues, and corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.Comment: 12 page

    Polynomial Solution of Non-Central Potentials

    Get PDF
    We show that the exact energy eigenvalues and eigenfunctions of the Schrodinger equation for charged particles moving in certain class of non-central potentials can be easily calculated analytically in a simple and elegant manner by using Nikiforov and Uvarov (NU) method. We discuss the generalized Coulomb and harmonic oscillator systems. We study the Hartmann Coulomb and the ring-shaped and compound Coulomb plus Aharanov-Bohm potentials as special cases. The results are in exact agreement with other methods.Comment: 18 page

    Path integral solution for an angle-dependent anharmonic oscillator

    Full text link
    We have given a straightforward method to solve the problem of noncentral anharmonic oscillator in three dimensions. The relative propagator is presented by means of path integrals in spherical coordinates. By making an adequate change of time we were able to separate the angular motion from the radial one. The relative propagator is then exactly calculated. The energy spectrum and the corresponding wave functions are obtained.Comment: Corrected typos and mistakes, To appear in Communications in Theoretical Physic

    Exact solution of Schrodinger equation for Pseudoharmonic potential

    Get PDF
    Exact solution of Schrodinger equation for the pseudoharmonic potential is obtained for an arbitrary angular momentum. The energy eigenvalues and corresponding eigenfunctions are calculated by Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The energy eigenvalues are calculated numerically for some values of l and n with n<5 for some diatomic molecules.Comment: 10 page

    Dirac Equation with Spin Symmetry for the Modified P\"oschl-Teller Potential in DD-dimensions

    Full text link
    We present solutions of the Dirac equation with spin symmetry for vector and scalar modified P\"oschl-Teller potential within framework of an approximation of the centrifugal term. The relativistic energy spectrum is obtained using the Nikiforov-Uvarov method and the two-component spinor wavefunctions are obtain are in terms of the Jacobi polynomials. It is found that there exist only positive-energy states for bound states under spin symmetry, and the energy levels increase with the dimension and the potential range parameter α\alpha.Comment: 9 pages and 1tabl
    corecore