77 research outputs found

    Radiation-induced alternative transcription and splicing events and their applicability to practical biodosimetry

    Get PDF
    Accurate assessment of the individual exposure dose based on easily accessible samples (e.g. blood) immediately following a radiological accident is crucial. We aimed at developing a robust transcription-based signature for biodosimetry from human peripheral blood mononuclear cells irradiated with different doses of X-rays (0.1 and 1.0 Gy) at a dose rate of 0.26 Gy/min. Genome-wide radiation-induced changes in mRNA expression were evaluated at both gene and exon level. Using exon-specific qRT-PCR, we confirmed that several biomarker genes are alternatively spliced or transcribed after irradiation and that different exons of these genes exhibit significantly different levels of induction. Moreover, a significant number of radiation-responsive genes were found to be genomic neighbors. Using three different classification models we found that gene and exon signatures performed equally well on dose prediction, as long as more than 10 features are included. Together, our results highlight the necessity of evaluating gene expression at the level of single exons for radiation biodosimetry in particular and transcriptional biomarker research in general. This approach is especially advisable for practical gene expression-based biodosimetry, for which primer-or probe-based techniques would be the method of choice

    Exposure to Ionizing Radiation Triggers Prolonged Changes in Circular RNA Abundance in the Embryonic Mouse Brain and Primary Neurons

    Get PDF
    The exposure of mouse embryos in utero and primary cortical neurons to ionizing radiation results in the P53-dependent activation of a subset of genes that is highly induced during brain development and neuronal maturation, a feature that these genes reportedly share with circular RNAs (circRNAs). Interestingly, some of these genes are predicted to express circular transcripts. In this study, we validated the abundance of the circular transcript variants of four P53 target genes (Pvt1, Ano3, Sec14l5, and Rnf169). These circular variants were overall more stable than their linear counterparts. They were furthermore highly enriched in the brain and their transcript levels continuously increase during subsequent developmental stages (from embryonic day 12 until adulthood), while no further increase could be observed for linear mRNAs beyond post-natal day 30. Finally, whereas radiation-induced expression of P53 target mRNAs peaks early after exposure, several of the circRNAs showed prolonged induction in irradiated embryonic mouse brain, primary mouse cortical neurons, and mouse blood. Together, our results indicate that the circRNAs from these P53 target genes are induced in response to radiation and they corroborate the findings that circRNAs may represent bioma

    Brain Radiation Information Data Exchange (BRIDE): Integration of experimental data from low-dose ionising radiation research for pathway discovery

    Get PDF
    Background: The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. Results: We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. Conclusions: BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at:

    The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments

    Get PDF
    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals

    Surgical management of Diabetic foot ulcers: A Tanzanian university teaching hospital experience

    Get PDF
    \ud \ud Diabetic foot ulcers (DFUs) pose a therapeutic challenge to surgeons, especially in developing countries where health care resources are limited and the vast majority of patients present to health facilities late with advanced foot ulcers. A prospective descriptive study was done at Bugando Medical Centre from February 2008 to January 2010 to describe our experience in the surgical management of DFUs in our local environment and compare with what is known in the literature. Of the total 4238 diabetic patients seen at BMC during the period under study, 136 (3.2%) patients had DFUs. Males outnumbered females by the ratio of 1.2:1. Their mean age was 54.32 years (ranged 21-72years). Thirty-eight (27.9%) patients were newly diagnosed diabetic patients. The majority of patients (95.5%) had type 2 diabetes mellitus. The mean duration of diabetes was 8.2 years while the duration of DFUs was 18.34 weeks. Fourteen (10.3%) patients had previous history of foot ulcers and six (4.4%) patients had previous amputations. The forefoot was commonly affected in 60.3% of cases. Neuropathic ulcers were the most common type of DFUs in 57.4% of cases. Wagner's stage 4 and 5 ulcers were the most prevalent at 29.4% and 23.5% respectively. The majority of patients (72.1%) were treated surgically. Lower limb amputation was the most common surgical procedure performed in 56.7% of cases. The complication rate was (33.5%) and surgical site infection was the most common complication (18.8%). Bacterial profile revealed polymicrobial pattern and Staphylococcus aureus was the most frequent microorganism isolated. All the microorganisms isolated showed high resistance to commonly used antibiotics except for Meropenem and imipenem, which were 100% sensitive each respectively. The mean hospital stay was 36.24 ± 12.62 days (ranged 18-128 days). Mortality rate was 13.2%. Diabetic foot ulceration constitutes a major source of morbidity and mortality among patients with diabetes mellitus at Bugando Medical Centre and is the leading cause of non-traumatic lower limb amputation. A multidisciplinary team approach targeting at good glycaemic control, education on foot care and appropriate footware, control of infection and early surgical intervention is required in order to reduce the morbidity and mortality associated with DFUs. Due to polymicrobial infection and antibiotic resistance, surgical intervention must be concerned

    De-Novo Discovery of Differentially Abundant Transcription Factor Binding Sites Including Their Positional Preference

    Get PDF
    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open-source Java framework Jstacs and as a stand-alone application at http://www.jstacs.de/index.php/Dispom
    corecore