748 research outputs found
Probabilistic reasoning with a bayesian DNA device based on strand displacement
We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro
Survey on Vision-based Path Prediction
Path prediction is a fundamental task for estimating how pedestrians or
vehicles are going to move in a scene. Because path prediction as a task of
computer vision uses video as input, various information used for prediction,
such as the environment surrounding the target and the internal state of the
target, need to be estimated from the video in addition to predicting paths.
Many prediction approaches that include understanding the environment and the
internal state have been proposed. In this survey, we systematically summarize
methods of path prediction that take video as input and and extract features
from the video. Moreover, we introduce datasets used to evaluate path
prediction methods quantitatively.Comment: DAPI 201
Probing nuclear expansion dynamics with -spectra
We study the dynamics of charged pions in the nuclear medium via the ratio of
differential - and -spectra in a coupled-channel BUU (CBUU)
approach. The relative energy shift of the charged pions is found to correlate
with the pion freeze-out time in nucleus-nucleus collisions as well as with the
impact parameter of the heavy-ion reaction. Furthermore, the long-range Coulomb
force provides a 'clock' for the expansion of the hot nuclear system. Detailed
comparisons with experimental data for at 1 GeV/A and at
2.0 GeV/A are presented.Comment: 21 pages, latex, figures include
Dynamics of Transformation from Segregation to Mixed Wealth Cities
We model the dynamics of the Schelling model for agents described simply by a
continuously distributed variable - wealth. Agents move to neighborhoods where
their wealth is not lesser than that of some proportion of their neighbors, the
threshold level. As in the case of the classic Schelling model where
segregation obtains between two races, we find here that wealth-based
segregation occurs and persists. However, introducing uncertainty into the
decision to move - that is, with some probability, if agents are allowed to
move even though the threshold level condition is contravened - we find that
even for small proportions of such disallowed moves, the dynamics no longer
yield segregation but instead sharply transition into a persistent mixed wealth
distribution. We investigate the nature of this sharp transformation between
segregated and mixed states, and find that it is because of a non-linear
relationship between allowed moves and disallowed moves. For small increases in
disallowed moves, there is a rapid corresponding increase in allowed moves, but
this tapers off as the fraction of disallowed moves increase further and
finally settles at a stable value, remaining invariant to any further increase
in disallowed moves. It is the overall effect of the dynamics in the initial
region (with small numbers of disallowed moves) that shifts the system away
from a state of segregation rapidly to a mixed wealth state.
The contravention of the tolerance condition could be interpreted as public
policy interventions like minimal levels of social housing or housing benefit
transfers to poorer households. Our finding therefore suggests that it might
require only very limited levels of such public intervention - just sufficient
to enable a small fraction of disallowed moves, because the dynamics generated
by such moves could spur the transformation from a segregated to mixed
equilibrium.Comment: 12 pages, 7 figure
Towards a Statistical Physics of Human Mobility
In this paper, we extend some ideas of statistical physics to describe the
properties of human mobility. From a physical point of view, we consider the
statistical empirical laws of private cars mobility, taking advantage of a GPS
database which contains a sampling of the individual trajectories of 2% of the
whole vehicle population in an Italian region. Our aim is to discover possible
"universal laws" that can be related to the dynamical cognitive features of
individuals. Analyzing the empirical trip length distribution we study if the
travel time can be used as universal cost function in a mesoscopic model of
mobility. We discuss the implications of the elapsed times distribution between
successive trips that shows an underlying Benford's law, and we study the rank
distribution of the average visitation frequency to understand how people
organize their daily agenda. We also propose simple stochastic models to
suggest possible explanations of the empirical observations and we compare our
results with analogous results on statistical properties of human mobility
presented in the literature
- …