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In this paper, we extend some ideas of statistical physics to describe the properties of
human mobility. From a physical point of view, we consider the statistical empirical laws
of private cars mobility, taking advantage of a GPS database which contains a sampling

of the individual trajectories of 2% of the whole vehicle population in an Italian region.
Our aim is to discover possible ”universal laws” that can be related to the dynamical
cognitive features of individuals. Analyzing the empirical trip length distribution we
study if the travel time can be used as universal cost function in a mesoscopic model of
mobility. We discuss the implications of the elapsed times distribution between successive
trips that shows an underlying Benford’s law, and we study the rank distribution of the
average visitation frequency to understand how people organize their daily agenda. We
also propose simple stochastic models to suggest possible explanations of the empirical
observations and we compare our results with analogous results on statistical properties
of human mobility presented in the literature.
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1. Introduction

Human mobility has recently become a fruitful research field in complexity science1,

as it offers the possibility of performing the study of a complex system at many de-

scription levels. Indeed, Information Communication Technologies allow to collect

big databases on the individual dynamics and make human mobility a paradigmatic

example of a statistical system of cognitive particles2. Understanding human mo-

bility in urban contexts has relevant consequences not only for urban planning3,

opinion spreading1 and epidemic dynamics5,4, but it contributes to the formulation

of a statistical mechanics for complex systems. In our opinion this last goal requires

three fundamental steps:

• to discover universal statistical laws that describe the average properties of

human mobility;

• to characterize the microscopic dynamics of individuals sharing the same

urban environment;

1
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• to study the existence of critical phenomena (i.e. phase transitions) due to

the individual interactions in presence of limited resources or the appear-

ance of transient states driven by external sudden changes.

Up to now, the scientific efforts have been focused on making progress in the first

two items, whereas the third item seems to be beyond the possibilities of the present

scientific methodologies. The existence of statistical laws is based on the definition

of macroscopic observables that give information on the global state of the system

(e.g. the definition of a mobility temperature). The study of microscopic individual

dynamics would aim to understand the mobility strategies, i.e. to discover common

features in the use of time and space and in the organization of mobility agenda that

are related to cognitive behaviors. In the paper6 the individual mobility is recorded

indirectly by tracking the movements of dollar bills and a power-law distribution for

spatial displacements have been proposed. In a second paper, the individual mobility

has been analyzed by using access data to specific internet sites7. In these cases we

have an indirect measure of human mobility without details on individual behavior,

due to non-biunivocal correspondence between performed activities and the use

of bills or the internet accesses. Other papers study the individual mobility using

the localization of the mobile phone calls8,9 and GPS (Global Position System) taxi

database10,11. To work with mobility data the relation between the type of activity

and the frequency of the phone calls must be understood or the cost of the taxi

service must be considered. In all cases the study of human mobility within urban

contexts is difficult due to the nature of urban mobility, dominated by short trips. In

this paper we use a GPS database from vehicles collected in Italy. Approximately,

2% of the whole vehicle population is monitored by insurance reasons and time,

position, velocity and covered distance are recorded by sampling each trajectory at

a spatial scale of 2 km or a time scale of 30 seconds. Moreover, a datum is also

recorded each time the engine is switched on or off. Even if one has no control on

the population sample, the database offers a unique possibility to study the human

mobility at a fine spatial scale on large urban areas using long time series. We analyze

the GPS data recorded in the whole Emilia Romagna region during the month of

November 2009. We have filtered the data to consider only trips whose initial and

end points are inside the region and only individuals that mainly live and perform

their mobility in the considered area. The spatial extension of Emilia Romagna is

approximately 220×100 km2 and it allows to study both small scale urban mobility

and intercity mobility. Our aim is to develop a statistical physics approach to human

mobility based on universal properties and/or cost functions12,13, that characterize

the individual behavior at mesoscopic level. This is performed by studying the

main statistical features that describe the dynamical properties of mobility and the

relation with the downtimes: i.e. the time intervals between two successive trips,

during which the GPS system is switched off. We assume that a location can be

associated to each downtime. The paper is organized as follows: in the first section

we present the GPS database used by our analysis, in the second section we discuss
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the statistical laws related to the use of space and time. In the third section we

study the statistical properties that could be consequences of individual cognitive

behaviors.

2. GPS Data: preprocessing and main properties

The GPS database is collected by a private company (Octo Telematics s.p.a.) for

insurance reasons and refers to ≃ 2% of the whole vehicle population. Due to the

italian law on privacy we have no direct information on individuals, but the installa-

tion of a GPS system on a vehicle entitles the holder to a discount off the insurance

price. This is particular appealing for young people so that it expected a bias in

this sense in the considered sample. The taxi companies or the delivering services

use their own GPS systems and they do not contribute to the database, which is

mainly set up by private vehicles. There is a small percentage of vehicles used for

professional reasons and belonging to private companies, that take advantage of the

insurance discounts of collective contracts. In our analysis we have selected people

whose mobility is performed inside the Emilia Romagna region, discarding the trips

whose origin or destination are outside the region, so that we expect to describe the

private car mobility performed by citizens living inside the considered region. The

data set refers to a sample of about 75, 000 monitored vehicles that complete 7.7

million trips internal to the region. A GPS measure is recorded each time the engine

is switched on or off and the trips are sampled each 2 km or 30 seconds depending

on the central system needs. The recorded data are time, position (longitude and

latitude), actual velocity, covered distance from the initial measure and GPS quality

signal for each vehicle14. A filtering procedure has been applied to discard trajec-

tories affected by systematic errors that prevent the correct vehicle georeferencing

on the road network, or the evaluation of trip length or duration14. The expected

error in a typical GPS measure is about 10 m in the position, whereas it is negligible

in the time. In the figure 1, we plot the Georeferenced GPS data recorded during

the whole month of November 2009 inside the Emilia Romagna region. The data

distribution allows to recognize the location of the main cities along the historical

axis from east to west defined by the roman road Via Emilia. The most part of the

population lives in the vicinity of the ancient Via Emilia or in the northern part of

the region, where the Padana plain stretches towards the Po river. The southern

part of the region is mainly mountainous and barely populated. On the eastern part

we have the Adriatic sea coast, that attracts tourists with entertainment activities.

From a physical point of view the vehicles realize a dynamical system on a config-

uration space defined by a network structure and the microscopic dynamics should

reflect the individual strategies. Indeed the complexity of urban environments do

not allow to reduce the mobility problem to the origin destination paradigm ruled by

circadian rhythms15. But each individual seems to organize independently his mo-

bility, trying to minimize the interaction with other individuals. As a consequence

the role of ”free will” becomes relevant and we have significant stochastic effects in
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Fig. 1. Georeferentiatied GPS data recorded in the Emilia Romagna region during the month
November 2009. The data distribution allows to detect the main cities locations along the ancient

Via Emilia that crosses longitudinally the region, the geometry of the main road network and the
population spread in the territory.

a mesoscopic description. In the next section we try to characterize the statistical

properties of individual mobility.

3. A statistical physics approach

As starting point we consider how to justify some of the typical assumptions of

classical statistical physics18. Human mobility can be seen a dynamical system

constrained by the road network and driven by the individual mobility demand. The

road network is organized in a hierarchical way, according to the spatial scale and the

relevancy of traffic flow, from the highways to the small urban streets. Moreover,

the sprawling phenomenon15, that influences the development of modern cities,

implies an increasing contribution of non-systematic mobility. To synthesize our

interpretation of experimental observations, we formulate some a priori assumptions

on the individual behavior.

Firstly, the individuals behave as almost independent particles, since each person

organizes the mobility according to his propensities. This means that individuals

interact due to traffic rules and that the relevance of collective mobility phenomena

is expected to be small in average (of course there can be exceptional events).

Secondly, habits have strong influence in human mobility. Our experimental data

suggest that the individuals tend to repeat the same path when going from the same

origin to the same destination. Moreover, many locations are visited several times

during the month. This also means that, in normal conditions, the dynamical system

associated to human mobility reaches a stationary state (mainly true for working

days; weekends are different).

Thirdly, at the base of the individual mobility there is a set of strategies and,

according to transport engineers16, the travel-time seems to play the role of cost

function.

We also remark that the previous assumptions should not be considered a de-
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scription of a individual microscopic dynamics, but a theoretical framework to de-

velop a statistical physics approach by means of mesoscopic models. Under this

point of view, individuals can be represented as particles moving between some

preferred destinations (home, workplace, ...), which are chosen with a daily peri-

odicity, with a stochastic dynamics due to traffic rule and vehicle interactions. To

support this picture we look for empirical statistical laws, inferred from the GPS

data, consistent with the previous hypotheses. We start considering the trip lengths

distribution (figure 2), computed using the GPS data. The trip length is defined

by the covered distance on the road network computed integrating the path length

from the location where the engine is switched on up to the location where the

engine is switched off (the trip length is recorded by the GPS system). We consider

a trip completed when the rest time is longer than 5 minutes otherwise we sum the

lengths between two successive stops. We remark on three main features:
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Fig. 2. Statistical distribution of the trip lengths for the whole Emilia Romagna computed by
using GPS data recorded during the November 2009: we use log-lin scale in the left picture and
log-log scale in the right picture. The log-lin scale a possible exponential behavior for the short trips
that corresponds to 95% of the data (red line). The log-log scale points out a possible interpolation
of the distribution tail by a power law: p(l) ∝ l−3.3 (red straight line).

(i) the very short trips (l ≤ 2 km) have a great statistical relevance;

(ii) there exists a characteristic trip length ≃ 6.2 km;

(iii) the long trip distribution recalls a fat tail (power law) distribution.

The trip length distribution reflects the way everybody realizes his mobility demand

in connection with the spatial activity distribution17. We propose a theoretical ex-

planation for the distribution using the previous hypotheses. As a consequence of

the circadian rhythms, it is quite natural to consider the daily mobility λ of each

individual defined by the sum of the trip lengths of performed within an interval of

24 hours. We expect the existence of an average daily mobility for the individuals

both for physical and economical reasons (any trip has a cost in time and energy).

The daily mobility distribution computed from the GPS data is plotted in fig. 3 to-

gether with an exponential interpolation. We suggest a theoretical explanation for
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Fig. 3. (Left plot) Daily mobility distribution from the GPS data selecting people moving inside
the Emilia Romagna region. The straight line refers to an exponential fit of the distribution with
a characteristic length β−1 = 30.4 ± 0.4 m. (Right plot) m(λ) distribution (cfr. definition (5))
computed using (4).

this behavior by dividing the territory into a number of different locations x ∈ X ,

with homogeneous geographical features. Assuming a given activity distribution in

the territory, we associate to each location a daily mobility length λx defined by the

average distance that an individual has to cover each day to satisfy his mobility de-

mand (in other words λx measures the accessibility of the x-location to the existing

activities). Let px be a priori probability that an individual chooses to live in the

x-location without taking into account any mobility costa. Assuming that individ-

uals act as independent particles, the probability associated to a distribution {nx},

where nx is the number of individuals in the location x, is given by a multinomial

distribution

w({nx}) =
∏

x

(

pnx

x

nx!

)

(1)

Applying a maximal entropy principle with the constraints that the total number

of individuals and the total mobility are finite
∑

x

nx = N
∑

x

λxnx = Λ

one can determine the most probable distribution. Maximizing the Gibbs entropy18

S = −
∑

x

w(nx) lnw(nx) (2)

we get the Maxwell-Boltzmann distribution

ρ(x) = A exp(−βλx)px (3)

aIn a homogeneous territory px would be constant, otherwise px may depend on the geographical
features.



July 25, 2012 0:15 WSPC/INSTRUCTION FILE emilia˙stat

7

where A is a normalizing constant and β depends on the average mobility β−1 =

Λ/N . Adding over all the locations with the same value λx = λ, we finally get the

distribution

ρ(λ) = Am(λ) exp(−βλ) (4)

where

m(λ) =
∑

λx=λ

px (5)

The measure m(λ) gives the statistical weight of individuals that would perform a

daily mobility λ, if their distribution in the territory would not depend on mobility

costs. As shown in fig. 3, the daily mobility distribution is quite well interpolated by

an exponential distribution in the interval 10 km < λ < 150 km. The distribution

m(λ) estimated according to the formula (4) (figure 3 right), has a limited variation

within this interval with a local maximum at λ ≃ 30 km, that reflects the macro-

scopic spatial distribution of activities in the Emilia Romagna territory. Therefore

a possible explanation for the m(λ) behavior is the following: considering that the

activities are mainly located in the cities, the initial increase of m(λ) is due to the

population living in the attraction basin of the cities and the maximum at ≃ 30 km

gives an estimate of the average distance among the main cities.

The statistical distribution (3) leaves open the question if the exponential decay

is related to the extension of the considered region. We, then, have compared the

daily mobility related to areas of different size R centered around Bologna (the

regional capital), from the Bologna province (R ≤ 30 km), to the area enclosing

the nearby cities (R ≤ 50 m) and then to the whole region. In each area we have

only considered individuals whose mobility is performed internally to the area itself,

but that have not been previously (for smaller radius) considered. We recall that

our analysis refers to the use of private vehicles and we expect that cars are used

to satisfy the same mobility demand in all the cases; this is false inside urban

areas (R < 5 km) where one has a good availability of public means and more

restriction in the use of private cars. The resulting distributions are reported in

fig. 4 where the exponential decaying can be clearly detected at different scales,

and for large daily mobility we see a different behavior close to the main city. The

results suggest that an entropic principle is robust in describing the average mobility

demand, but the characteristic spatial scale decreases approaching an urban area.

Considered the travel time distributions (see figure 4 (right)), interestingly, they

tend to collapse into a single curve. This is an experimental evidence that time may

define an universal cost for mobility (once the transportation mean is given): the

average mobility time is estimated 70 minutes from the GPS datab.

Comparing the figures 4 left and right, we remark that the space-time relation

cannot be reduced to a simple proportionality. The reason is twofold: from one

bThis value could be interpreted as the daily time that an individual accepts to invest in his
mobility.
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Fig. 4. (Left picture) Daily mobility distributions computed considering individuals which per-

form their mobility inside regions of different size around the Bologna center: the circles refer
to the Bologna province R ≃ 30 km, the crosses refer to region that includes the nearby cities
R ≃ 50 km and the triangles give the distribution for the whole region. (Right picture) Daily travel
time distribution corresponding to the daily mobility distributions plotted in the left picture: the
different symbols have the same legenda as in the left picture and refer to the same areas.

hand there is an intrinsic heterogeneity in the human mobility due to different

drivers behaviors, on the other hand the small scale structure of the road network

influences the vehicle dynamics. To better understand the space-time relation, we

have studied the variance of the average speed as a function of the trip length. In

the figure 5 we plot the result for the whole GPS data set: the data show a power

law increase of the variance for very short trips and a relaxation to a stationary

condition for trip lengths greater than 8 km: the stationary variance corresponds to

a rms σ0 ≃ 10 km/h in the speed distribution (the red line show an interpolation of

the experimental data). However, considering the average speed distribution for the

whole trips, it is possible to point out two different typologies: the short trips l ≤ 5

km with an average velocity ≃ 20 km/h and a small variance and the longer trips

with a distribution centered at ≃ 45 km/h and with a rms σ0 ≃ 10 km/h (fig. 5

left). The velocity distribution for the short trips probably refers to urban mobility,

but the correlation of the profile with the road network features is an open problem.

We remark that the two trip typologies are not directly related to the exponential

and power law behavior in the trip length distribution (see fig. 7)since the power

law behavior can be detected considering trip longer than 20 km.

In order to relate the trip length distribution (fig. 2) with the daily mobility (fig.

4), we consider how many trips each individual makes in a day. In figure 6 we

plot the probability distribution of the trip number together with an exponential

interpolation. For n ≤ 5 we have about half of the sample population that performs a

systematic mobility, whereas when n > 5 the exponential decay suggests a statistical

equilibrium without any particular structure in the individual mobility. To interpret

the statistical part of the trip distribution (cfr. fig.2), we consider an ensemble of

particles characterized by a total mobility λ, and for each particle we randomly
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Fig. 5. (Left picture) Average speed variance as a function of the trip length: we have computed
the average speed for a given trip length using the GPS data of the whole Emilia-Romagna with
a discretization step of 100 m. The continuous line is a data interpolation using the function
σ2(l) = σ2

0
(1 − exp−(l/b)5/2) with σ0 = 10 km and b = 3.8 km. (Right picture) Average speed

distribution for the recorded trips (blue curve): the distribution can be decomposed into the sum
of two distributions considering the trips whose length is ≤ 5 km (red curve) and the remaining
ones (green curve).
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Fig. 6. Distribution of the daily activity number for the sampled individuals in Emilia Romagna;
the continuous line is an exponential interpolation p(n) ∝ exp(−n/a) with a = 3.27± .08.

distribute at most n destinations within the interval [0, λ]. The obtained distances

among the destinations are the trips performed by individual-particles. Given λ and

n, the trip distribution can be computed analytically according to19

pn,λ(l) ∝

n
∑

k=1

e−k/a(k + 1)k(1− l/λ)k−1 (6)

where l ∈ [0, L] and a = 3.27 is determined from the trip distribution (see fig 6).

Using the exponential distribution (4, where we neglect the changes due to m(λ),
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and integrating over λ, we get an analytic formula for the trip distribution

pn(l) ∝

∫ λM

λm

pn,λ exp(−βλ)dλ (7)

In the fig. 7 we compare the empirical trip distribution with our analytical result

(7). Formula (7) closely interpolates the experimental data for short trip lengths
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Fig. 7. Statistical distribution of the trip lengths measured using GPS data (black dots): the red
curve refers to the distribution (7), whereas the blue curve is computed using eq. (8) with λ = 180
km and n = 30.

l ≤ 15 km c. This allows to reproduce the mobility of ≃ 87% of the observed users,

that correspond to ≃ 52% of the total space traveled. But we have a discrepancy in

the tail of the empirical distribution. A possible explanation is obtained if one does

not introduce the exponential decaying in the number of trips (cfr. fig. 6), so that

the distribution (6) reads

pn,λ(l) =
2λ2

n(n+ 3)

n
∑

k=1

(k+1)k(1− l/λ)k−1 =
2λ3

n(n+ 3)

d2

dl2
(1− l/λ)2

1− (1− l/λ)n

l
)

(8)

Since 1− l/λ is small for long trip (l ≃ λ) for n ≫ 1 we can approximate

pn,λ(l) ≃
2λ3

n(n+ 3)

d2

dl2
(1− l/λ)2

1

l
∝ l−3 +O(λ−2) (9)

The power law tail (9) seems to be in agreement with the empirical observations

(see fig. 7 for a comparison of (8) with the experimental data). This result suggests

that we have users with a number of trips higher than the statistical expectation

and with a large mobility: probably they use the vehicle for working reasons. We

remark that the power law p(l) ∝ l−3 is different from the power-laws suggested

cThe discrepancy at very small trip l < 1 km is expected since using the exponential distribution
e−k/a for the activities, we have overestimated the small trips.
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by the dollar bill displacement distribution p(l) ∝ l−1.596 or by the mobile phone

data p(l) ∝ l−1.7521. But both consider a much larger spatial scale and do not refer

to a particular transportation mean. Conversely it is consistent with the taxi data

analysis11, that is related to human mobility in a large road network. The analysis

suggests that the complexity of human mobility is due to strong interactions among

individuals or to environment structure, but it is mainly due to the individual

mobility organization in space and time.

4. Time and human activities

The mobility demand is strictly linked to the individual activities. GPS data do

not give information on the individual activities, but we may assume that each

time a driver leaves the engine off more than 5 minutes, this can be associated to a

performed activity (i.e. the stop is the result of a decision and not accidental). So,

we can study the activity time distribution to understand how individuals use their

time. The result is plotted in the figure 8 where we point out the existence of a Ben-

ford’s lawd p(t) ∝ 1/t20 that accurately explains the distribution for t ≤ 3 h (≃ 95%

of the data): a numerical interpolation of the experimental data gives p(t) ∝ 1/tα

with α = 1.02±0.02. We remark that the empirical Benford’s law for the spent time
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Fig. 8. (Left picture) Statistical distribution of the activity times computed using GPS data of the
whole Emilia Romagna region (blue dots). The straight line suggests the existence of a Benford’s
law p(t) ∝ 1/t. (Right picture) Total activity time distribution (cfr. eq. (10)). The different peaks
can be associated to the main individual activities: part-time job, full time job and the night rest.

in the visited locations suggested by the data, is not consistent with the analogous

distributions computed from the mobile phone data p(t) ∝ t−β with β = 1.8; this

can be the consequence of the finer time resolution of the GPS data, that allows

dBenford’s law is a probability distribution P (n) = ln(1 + 1/n) where n is integer, that can be
associated to a probability density p(t) = 1/t where t is real.
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to properly consider short time activities. The existence of a Benford’s law for the

rest time distribution could be an indication of a log-time perception(WeberFechner

law23). In other words time is spent proportionally to the time at disposal19. The

GPS data suggest that distribution in fig. 8 is robust and does not depend on the

spatial scale considered (we have the same distribution considering different cities).

To extract relevant information we consider the distribution π(t) of the average

time spent for activities with a time cost t (fig. 8 right).

π(t) = tp(t) (10)

Fig. 8 shows the peaks related to the main human activities: the part time job (rest

time t ≃ 4 h), the full time job (rest time t ≃ 8 h) and the night rest. A small peak

is also around t ≃ 1.5 h.

To study individual agenda, we introduce individual mobility networks, where each

node is a visited location and each weighted and directed link implies the existence

of one or more trips between two locationse. Then we have ordered the nodes from

the highest degree to the lowest one for each individual mobility network (rank dis-

tribution). Finally by grouping the individual mobility networks according to the

number of nodes, we have computed the average visitation frequency fk of the nodes

with the same rank. The results are reported in the figure 9 where we point out

a possible interpolation with a power law distribution fk ∝ k−α where α = 1.42.

The existence of a power law distribution for the frequency rank indicates as the

individual activities network is structured according to a preferential attachment

rule, where the most visited locations could be related to habit mobility. The expo-

nent α ≃ 1.42 computed numerically is in agreement with the analogous results on

human mobility based on a different data set21. Under this point of view human

mobility can be represented as a dynamical process on a weighted network where

each individual jumps from one node to another in a random way with preferential

attachment21. We have empirically studied the diffusion property of this process

using the time dependence of the total number of different visited locations n(t) for

individuals whose mobility covers at least 20 days in the analyzed period: i.e. n(t)

is the number of new locations visited by the ensemble of individuals in a time t.

We apply a Markov hypothesis to describe the evolution of n(t). Letting p(k, t) be

the probability that the individuals have visited k locations after t days, we have

the Master equation

p(k, t+ 1) = p(k, t)p̄k + p(k − 1, t)(1− p̄k−1) (11)

where p̄k is an average probability to choose one of the k visited locations, that we

assume not dependent from t (stationary process). By definition

n(t) =
∑

k

kp(k, t)

ewe have clustered the locations whose distance is less than 500 m, that is an acceptable walking
distance from the parking place to the final destination22.
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Fig. 9. (Left picture) Rank distribution of the average visitation frequency for each nodes in
the individual mobility networks with a fixed number of nodes: N = 5 (triangles down), N = 10
(circles), N = 15 (triangles up), N = 20 (light squares), N = 25 (stars), N = 30 (squares) and
N = 35 (diamonds). The red line corresponds to a power law interpolation where fk ∝ k−α where
α = 1.42±.06. (Right picture) Number of visited distinct locations as a function of time (day unit);
the continuous line is an interpolation using a power law n(t) ∝ tβ where β = 0.5357 ± 0.006. In
both figures the data refer to individuals that perform at least 20 mobility days in the considered
period.

so that from the equation (11) we get

n(t+ 1) = n(t) + 1−
∑

k

p(k, t)p̄k (12)

where we have used the normalizing condition

∑

k

p(k, t) = 1

and we have neglected the boundary effect of a finite number of locations. To pro-

ceed, we need to estimate p̄k. Assuming that individuals perform a Markov’s dy-

namics, p̄k is the measure of the k visited locations. The average visitation frequency

fk can be interpreted both as a measure or as a choice probability of the k location.

Let us order the k locations according to their rank, the average measure of the

j ∈ [1, k] choice (after j − 1 choices), mj , can then be estimated

mj ∝

∫ N

j

f2
l dl ∝

∫ N

j

1

l2α
dl ∝

1

j2α−1
N ≫ 1 (13)

where we have used the power law interpolation for the rank distribution fk ∝ k−α.

As a consequence, the expected measure for the k visited locations reads

p̄k ∝

k
∑

j=1

1

j2α−1
≃

∫ k

1

1

j2α−1
dj ∝

(

1−
1

k2α−2

)

(14)
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By definition p̄k → 1 as k increases. Using the estimate (14), the equation (12)

reads

n(t+ 1) = n(t) + 1−
∑

k

p(k, t)

(

1−
1

k2α−2

)

= n(t)−
∑

k

p(k, t)

k2α−2
(15)

Then we apply the mean field theory argument to reduce the equation (15) to the

simple form

n(t+ 1) = n(t) +
1

n(t)2α−2
(16)

whose solution can be approximated by

n(t) ≃ ct1/(2α−1) (17)

where c is an integration constant. According to the fk interpolation (fig. 9 left)

α ≃ 1.42± .06 and we get

n(t) ∝ tβ

where β = .54 ± .03. The result is very close to the numerical interpolation of the

empirical measures, that gives β = .53 (fig. 9 right) and it has to be compared with

the result β = .60±.02 reported in the literature using mobile phone data21. But we

have to remark that the model presented in the paper21 to reproduce the individual

mobility cannot be applied in our case since it is not consistent with the empirical

activity time distribution (fig. 8). The results may be interpreted in a twofold way.

From one hand this is another indication that macroscopic statistical properties of

human mobility mimics the properties of an ensemble of particles which perform

a stochastic Markov dynamics, taking into account the existence of spatial and

temporal constraints. On the other hand the individual dynamics is certainly not

a Markov process and the rank distribution in fig. 9 is the result of a cognitive

behavior that defines the daily mobility agenda in a complex urban environment.

5. Conclusions

We have analyzed some statistical properties of human mobility, that are related

to the use of private cars. Our results are based on a sample of individual trajecto-

ries (≃ 2%) of the whole vehicle population of an Italian region (Emilia Romagna)

(22000 km2) recorded using a GPS system. We have shown as the daily mobility

time can be used as ”cost function” to describe the average behavior of individuals

in a stationary situation, in a theoretical framework similar to the Boltzmann’s gas

model. An exponential-like distribution is also suggested by the individual classifi-

cation according to the average number of daily trips. The empirical distribution

of the single trip length up to 15 km and more, is consistent with a Boltzmann’gas

framework if one assumes a random model for the choice of the trip length given

the daily mobility and the number of activities. Our analysis points out that the

short trip distribution, that is mainly related to urban mobility, does not obey to a
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power law, but closely obeys to exponential law. The empirical data suggests only

the existence of a power law behavior for the long trip distribution, that could be

interpreted by means of a correlation between the number of performed activities

and the daily mobility. To recover an empirical power law distribution for individ-

ual mobility, as reported in the literature6, one has probably to consider different

transportation means. The study of the downtime distribution between two succes-

sive trips has confirmed the existence of a universal Benford’s law20 that could be

related to a log-time perception23, when individuals perform their daily ”asystem-

atic” activities. Whereas the three peaks detected in the average time distribution

correspond to the systematic activities of part-time and full-time jobs, and the night

rest. Our analysis points out that the majorities of the performed activities seems

to obey to a statistical distribution of independent events even if the time spent in

the ”systematic activities” is relevant. This may indicate that human behavior dur-

ing mobility has strong stochastic components and the predictability of the spatial

displacements can be difficult, contrarily to the localization in time24. Finally, we

have performed a study to unroll the relevance of habits in the individual mobility.

Our results are in a qualitative agreement with analogous results based on different

data and confirm the idea that the individual mobility networks can be understood

using a preferential attachment paradigm, but the comprehension of the primal

mechanisms of the individual mobility demand is still an open problem.

Acknowledgments

We thanks Octo Telematics s.p.a. for providing the GPS database.

References

1. A. Vespignani, Nature Physics 8, 32 (2012).
2. A.Bazzani, B.Giorgini, F.Zanlungo, S.Rambaldi, ARTIFICIAL LIFE AND EVOLU-

TIONARY COMPUTATION - Proceedings

of Wivace 2008, eds. R.Serra,M.Villani,I.Poli (World Scientific, Singapore, 2009), p.
3.

3. H.D. Rozenfeld, et al. Proceedings of the National Academy of Sciences of the United

States of America 105, 18702 (2008).
4. L. Hufnagel, D. Brockmann, T. Geisel, Proceedings of the National Academy of Sciences

of the United States of America 101, 15124 (2004).
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