1,457 research outputs found
Termination of Triangular Integer Loops is Decidable
We consider the problem whether termination of affine integer loops is
decidable. Since Tiwari conjectured decidability in 2004, only special cases
have been solved. We complement this work by proving decidability for the case
that the update matrix is triangular.Comment: Full version (with proofs) of a paper published in the Proceedings of
the 31st International Conference on Computer Aided Verification (CAV '19),
New York, NY, USA, Lecture Notes in Computer Science, Springer-Verlag, 201
Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions
In this paper we turn the spotlight on a class of lexicographic ranking
functions introduced by Bradley, Manna and Sipma in a seminal CAV 2005 paper,
and establish for the first time the complexity of some problems involving the
inference of such functions for linear-constraint loops (without precondition).
We show that finding such a function, if one exists, can be done in polynomial
time in a way which is sound and complete when the variables range over the
rationals (or reals). We show that when variables range over the integers, the
problem is harder -- deciding the existence of a ranking function is
coNP-complete. Next, we study the problem of minimizing the number of
components in the ranking function (a.k.a. the dimension). This number is
interesting in contexts like computing iteration bounds and loop
parallelization. Surprisingly, and unlike the situation for some other classes
of lexicographic ranking functions, we find that even deciding whether a
two-component ranking function exists is harder than the unrestricted problem:
NP-complete over the rationals and -complete over the integers.Comment: Technical report for a corresponding CAV'15 pape
Tight Polynomial Bounds for Loop Programs in Polynomial Space
We consider the following problem: given a program, find tight asymptotic
bounds on the values of some variables at the end of the computation (or at any
given program point) in terms of its input values. We focus on the case of
polynomially-bounded variables, and on a weak programming language for which we
have recently shown that tight bounds for polynomially-bounded variables are
computable. These bounds are sets of multivariate polynomials. While their
computability has been settled, the complexity of this program-analysis problem
remained open. In this paper, we show the problem to be PSPACE-complete. The
main contribution is a new, space-efficient analysis algorithm. This algorithm
is obtained in a few steps. First, we develop an algorithm for univariate
bounds, a sub-problem which is already PSPACE-hard. Then, a decision procedure
for multivariate bounds is achieved by reducing this problem to the univariate
case; this reduction is orthogonal to the solution of the univariate problem
and uses observations on the geometry of a set of vectors that represent
multivariate bounds. Finally, we transform the univariate-bound algorithm to
produce multivariate bounds
Proving Termination Starting from the End
We present a novel technique for proving program termination which introduces
a new dimension of modularity. Existing techniques use the program to
incrementally construct a termination proof. While the proof keeps changing,
the program remains the same. Our technique goes a step further. We show how to
use the current partial proof to partition the transition relation into those
behaviors known to be terminating from the current proof, and those whose
status (terminating or not) is not known yet. This partition enables a new and
unexplored dimension of incremental reasoning on the program side. In addition,
we show that our approach naturally applies to conditional termination which
searches for a precondition ensuring termination. We further report on a
prototype implementation that advances the state-of-the-art on the grounds of
termination and conditional termination.Comment: 16 page
Computing with and without arbitrary large numbers
In the study of random access machines (RAMs) it has been shown that the
availability of an extra input integer, having no special properties other than
being sufficiently large, is enough to reduce the computational complexity of
some problems. However, this has only been shown so far for specific problems.
We provide a characterization of the power of such extra inputs for general
problems. To do so, we first correct a classical result by Simon and Szegedy
(1992) as well as one by Simon (1981). In the former we show mistakes in the
proof and correct these by an entirely new construction, with no great change
to the results. In the latter, the original proof direction stands with only
minor modifications, but the new results are far stronger than those of Simon
(1981). In both cases, the new constructions provide the theoretical tools
required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended
abstract. The full paper was presented at TAMC 2013. (Reference given is for
the paper version, as it appears in the proceedings.
Ranking Templates for Linear Loops
We present a new method for the constraint-based synthesis of termination
arguments for linear loop programs based on linear ranking templates. Linear
ranking templates are parametrized, well-founded relations such that an
assignment to the parameters gives rise to a ranking function. This approach
generalizes existing methods and enables us to use templates for many different
ranking functions with affine-linear components. We discuss templates for
multiphase, piecewise, and lexicographic ranking functions. Because these
ranking templates require both strict and non-strict inequalities, we use
Motzkin's Transposition Theorem instead of Farkas Lemma to transform the
generated -constraint into an -constraint.Comment: TACAS 201
On Multiphase-Linear Ranking Functions
Multiphase ranking functions () were proposed as a means
to prove the termination of a loop in which the computation progresses through
a number of "phases", and the progress of each phase is described by a
different linear ranking function. Our work provides new insights regarding
such functions for loops described by a conjunction of linear constraints
(single-path loops). We provide a complete polynomial-time solution to the
problem of existence and of synthesis of of bounded depth
(number of phases), when variables range over rational or real numbers; a
complete solution for the (harder) case that variables are integer, with a
matching lower-bound proof, showing that the problem is coNP-complete; and a
new theorem which bounds the number of iterations for loops with
. Surprisingly, the bound is linear, even when the
variables involved change in non-linear way. We also consider a type of
lexicographic ranking functions, , more expressive than types
of lexicographic functions for which complete solutions have been given so far.
We prove that for the above type of loops, lexicographic functions can be
reduced to , and thus the questions of complexity of
detection and synthesis, and of resulting iteration bounds, are also answered
for this class.Comment: typos correcte
The Power of Non-Determinism in Higher-Order Implicit Complexity
We investigate the power of non-determinism in purely functional programming
languages with higher-order types. Specifically, we consider cons-free programs
of varying data orders, equipped with explicit non-deterministic choice.
Cons-freeness roughly means that data constructors cannot occur in function
bodies and all manipulation of storage space thus has to happen indirectly
using the call stack.
While cons-free programs have previously been used by several authors to
characterise complexity classes, the work on non-deterministic programs has
almost exclusively considered programs of data order 0. Previous work has shown
that adding explicit non-determinism to cons-free programs taking data of order
0 does not increase expressivity; we prove that this - dramatically - is not
the case for higher data orders: adding non-determinism to programs with data
order at least 1 allows for a characterisation of the entire class of
elementary-time decidable sets.
Finally we show how, even with non-deterministic choice, the original
hierarchy of characterisations is restored by imposing different restrictions.Comment: pre-edition version of a paper accepted for publication at ESOP'1
Tight polynomial bounds for Loop programs in polynomial space
We consider the following problem: given a program, find tight asymptotic
bounds on the values of some variables at the end of the computation (or at any given
program point) in terms of its input values. We focus on the case of polynomially-bounded
variables, and on a weak programming language for which we have recently shown that
tight bounds for polynomially-bounded variables are computable. These bounds are sets
of multivariate polynomials. While their computability has been settled, the complexity
of this program-analysis problem remained open. In this paper, we show the problem to
be PSPACE-complete. The main contribution is a new, space-efficient analysis algorithm.
This algorithm is obtained in a few steps. First, we develop an algorithm for univariate
bounds, a sub-problem which is already PSPACE-hard. Then, a decision procedure for
multivariate bounds is achieved by reducing this problem to the univariate case; this
reduction is orthogonal to the solution of the univariate problem and uses observations on
the geometry of a set of vectors that represent multivariate bounds. Finally, we transform
the univariate-bound algorithm to produce multivariate bounds
Reachability problems for PAMs
Piecewise affine maps (PAMs) are frequently used as a reference model to show
the openness of the reachability questions in other systems. The reachability
problem for one-dimentional PAM is still open even if we define it with only
two intervals. As the main contribution of this paper we introduce new
techniques for solving reachability problems based on p-adic norms and weights
as well as showing decidability for two classes of maps. Then we show the
connections between topological properties for PAM's orbits, reachability
problems and representation of numbers in a rational base system. Finally we
show a particular instance where the uniform distribution of the original orbit
may not remain uniform or even dense after making regular shifts and taking a
fractional part in that sequence.Comment: 16 page
- …