8 research outputs found

    Gαq and Phospholipase Cβ signaling regulate nociceptor sensitivity in Drosophila melanogaster larvae

    Get PDF
    Drosophila melanogaster larvae detect noxious thermal and mechanical stimuli in their environment using polymodal nociceptor neurons whose dendrites tile the larval body wall. Activation of these nociceptors by potentially tissue-damaging stimuli elicits a stereotyped escape locomotion response. The cellular and molecular mechanisms that regulate nociceptor function are increasingly well understood, but gaps remain in our knowledge of the broad mechanisms that control nociceptor sensitivity. In this study, we use cell-specific knockdown and overexpression to show that nociceptor sensitivity to noxious thermal and mechanical stimuli is correlated with levels of Gαq and phospholipase Cβ signaling. Genetic manipulation of these signaling mechanisms does not result in changes in nociceptor morphology, suggesting that changes in nociceptor function do not arise from changes in nociceptor development, but instead from changes in nociceptor activity. These results demonstrate roles for Gαq and phospholipase Cβ signaling in facilitating the basal sensitivity of the larval nociceptors to noxious thermal and mechanical stimuli and suggest future studies to investigate how these signaling mechanisms may participate in neuromodulation of sensory function

    Egg Laying Decisions in Drosophila Are Consistent with Foraging Costs of Larval Progeny

    Get PDF
    Decision-making is defined as selection amongst options based on their utility, in a flexible and context-dependent manner. Oviposition site selection by the female fly, Drosophila melanogaster, has been suggested to be a simple and genetically tractable model for understanding the biological mechanisms that implement decisions [1]. Paradoxically, female Drosophila have been found to avoid oviposition on sugar which contrasts with known Drosophila feeding preferences [1]. Here we demonstrate that female Drosophila prefer egg laying on sugar, but this preference is sensitive to the size of the egg laying substrate. With larger experimental substrates, females preferred to lay eggs directly on sugar containing media over other (plain, bitter or salty) media. This was in contrast to smaller substrates with closely spaced choices where females preferred non-sweetened media. We show that in small egg laying chambers newly hatched first instar larvae are able to migrate along a diffusion gradient to the sugar side. In contrast, in contexts where females preferred egg laying directly on sugar, larvae were unable to migrate to find the sucrose if released on the sugar free side of the chamber. Thus, where larval foraging costs are high, female Drosophila choose to lay their eggs directly upon the nutritious sugar substrate. Our results offer a powerful model for female decision-making

    From guide to target: molecular insights into eukaryotic RNA-interference machinery

    No full text
    Since its relatively recent discovery, RNA interference (RNAi) has emerged as a potent, specific and ubiquitous means of gene regulation. Through a number of pathways that are conserved in eukaryotes from yeast to humans, small noncoding RNAs direct molecular machinery to silence gene expression. In this Review, we focus on mechanisms and structures that govern RNA silencing in higher organisms. In addition to highlighting recent advances, we discuss parallels and differences among RNAi pathways. Together, the studies reviewed herein reveal the versatility and programmability of RNA-induced silencing complexes and emphasize the importance of both upstream biogenesis and downstream silencing factors
    corecore