298 research outputs found

    Monetary Resident Incentives: Effect on Patient Satisfaction in an Academic Emergency Department

    Get PDF
    Patient satisfaction most be a priority in emergency departments (EDs). The care provided by residents forms much of the patient contact in academic EDs

    Chaos and localization in the wavefunctions of complex atoms NdI, PmI and SmI

    Full text link
    Wavefunctions of complex lanthanide atoms NdI, PmI and SmI, obtained via multi-configuration Dirac-Fock method, are analyzed for density of states in terms of partial densities, strength functions (Fk(E)F_k(E)), number of principal components (ξ2(E)\xi_2(E)) and occupancies (\lan n_\alpha \ran^E) of single particle orbits using embedded Gaussian orthogonal ensemble of one plus two-body random matrix ensembles [EGOE(1+2)]. It is seen that density of states are in general multi-modal, Fk(E)F_k(E)'s exhibit variations as function of the basis states energy and ξ2(E)\xi_2(E)'s show structures arising from localized states. The sources of these departures from EGOE(1+2) are investigated by examining the partial densities, correlations between Fk(E)F_k(E), ξ2(E)\xi_2(E) and \lan n_\alpha \ran^E and also by studying the structure of the Hamiltonian matrices. These studies point out the operation of EGOE(1+2) but at the same time suggest that weak admixing between well separated configurations should be incorporated into EGOE(1+2) for more quantitative description of chaos and localization in NdI, PmI and SmI.Comment: There are 9 figure

    Electron recombination with multicharged ions via chaotic many-electron states

    Get PDF
    We show that a dense spectrum of chaotic multiply-excited eigenstates can play a major role in collision processes involving many-electron multicharged ions. A statistical theory based on chaotic properties of the eigenstates enables one to obtain relevant energy-averaged cross sections in terms of sums over single-electron orbitals. Our calculation of the low-energy electron recombination of Au25+^{25+} shows that the resonant process is 200 times more intense than direct radiative recombination, which explains the recent experimental results of Hoffknecht {\em et al.} [J. Phys. B {\bf 31}, 2415 (1998)].Comment: 9 pages, including 1 figure, REVTe

    Diversity and expression of microRNAs in the filarial parasite, Brugia malayi

    Get PDF
    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From approximately 30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5-7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics

    Human-Biometeorological Assessment of Urban Structures in Extreme Climate Conditions: The Example of Birobidzhan, Russian Far East

    Get PDF
    The study shows the effect of urban structures on human thermal comfort indices in the extreme climate region of the Russian Far East, with an annual temperature range of 75 ∘ C. The study examines different urban zones in Birobidzhan, the capital city of the Jewish Autonomous Region (JAR). The climate of this region can be characterized as continental monsoon climate. The difference of thermal values for three zones with different vegetation and build-up density shows the influence of urban planning on the local microclimate. The moderating effect of dense build-up and inner city vegetation on extreme thermal conditions becomes clear when comparing all zones. Through the analysis of daily and monthly timelines it was possible to determine preferable times of the day for inner city outdoor activities. From the results derived from PET with a total of 170 days per year with PET values below 0 ∘ C Birobidzhan can be considered a region of extreme cold stress. This means that an adaptation based solely on behaviour and clothing is not sufficient, but an adaptation of the urban surroundings and therefore the identification and choice of preferable urban structures is necessary

    A Holder Continuous Nowhere Improvable Function with Derivative Singular Distribution

    Full text link
    We present a class of functions K\mathcal{K} in C0(R)C^0(\R) which is variant of the Knopp class of nowhere differentiable functions. We derive estimates which establish \mathcal{K} \sub C^{0,\al}(\R) for 0<\al<1 but no KKK \in \mathcal{K} is pointwise anywhere improvable to C^{0,\be} for any \be>\al. In particular, all KK's are nowhere differentiable with derivatives singular distributions. K\mathcal{K} furnishes explicit realizations of the functional analytic result of Berezhnoi. Recently, the author and simulteously others laid the foundations of Vector-Valued Calculus of Variations in LL^\infty (Katzourakis), of LL^\infty-Extremal Quasiconformal maps (Capogna and Raich, Katzourakis) and of Optimal Lipschitz Extensions of maps (Sheffield and Smart). The "Euler-Lagrange PDE" of Calculus of Variations in LL^\infty is the nonlinear nondivergence form Aronsson PDE with as special case the \infty-Laplacian. Using K\mathcal{K}, we construct singular solutions for these PDEs. In the scalar case, we partially answered the open C1C^1 regularity problem of Viscosity Solutions to Aronsson's PDE (Katzourakis). In the vector case, the solutions can not be rigorously interpreted by existing PDE theories and justify our new theory of Contact solutions for fully nonlinear systems (Katzourakis). Validity of arguments of our new theory and failure of classical approaches both rely on the properties of K\mathcal{K}.Comment: 5 figures, accepted to SeMA Journal (2012), to appea

    Calculations of parity nonconserving s-d transitions in Cs, Fr, Ba II, and Ra II

    Get PDF
    We have performed ab initio mixed-states and sum-over-states calculations of parity nonconserving (PNC) electric dipole (E1) transition amplitudes between s-d electron states of Cs, Fr, Ba II, and Ra II. For the lower states of these atoms we have also calculated energies, E1 transition amplitudes, and lifetimes. We have shown that PNC E1 transition amplitudes between s-d states can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in these transitions there are no strong cancelations between different terms in the sum-over-states approach. In fact, there is one dominating term which deviates from the sum by less than 20%. This term corresponds to an s-p_{1/2} weak matrix element, which can be calculated to better than 1%, and a p_{1/2}-d_{3/2} E1 transition amplitude, which can be measured. Also, the s-d amplitudes are about four times larger than the corresponding s-s transitions. We have shown that by using a hybrid mixed-states/sum-over-states approach the accuracy of the calculations of PNC s-d amplitudes could compete with that of Cs 6s-7s if p_{1/2}-d_{3/2} E1 amplitudes are measured to high accuracy.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
    corecore