845 research outputs found

    On the development of a MODEM for data transmission and control of electrical household appliances using the low-voltage power-line

    Get PDF
    This paper presents a CMOS 0,6μm mixed-signal MODEM ASIC for data transmission on the low-voltage power line. The circuit includes all the analog circuitry needed for input interfacing and modulation/demodulation (PLL-based frequency synthesis, slave filter banks with PLL master VCO for tuning, decision circuitry, etc.) plus the logic circuitry needed for control purposes. The circuit operates correctly in the whole industrial temperature range, from -45 to 80°C, under 5% variations of the 3.3V supply voltage.Comisión Interministerial de Ciencia y Tecnología FD97-1611(TIC)Ministerio de Ciencia y Tecnología TIC200 1-092

    Reduction of operational amplifiers finite gain effects in switched-capacitor biquads

    Get PDF
    A combined approach for reducing the errors in the pole frequency f p, the pole Q - factor Qp and the magnitude at the pole frequency Hp, of switched capacitor biquads is presented. First, the conventional integrators in the biquads are replaced with gain-and offset-compensated integrators. Next, the errors Δ ƒp / ƒp, Δ Qp / Qp and Δ Hp / Hp are minimized by modifying three capacitances: two feedback capacitances and feed forward capacitance. The effectiveness of this approach is demonstrated by designing a band pass biquad

    Simulation study of side-by-side spiral coil design for micromagnetometer

    Get PDF
    Magnetic field measurement has many applications particularly in the field of navigation, military, space exploration, and medical. Among many magnetic devices, magnetometer is significant due to its capability of detecting direction and measuring strength of magnetic field. Through the years, many types of magnetometer had been invented with fluxgate magnetometer being one of the most well-known. In the advances of MEMS processing technology, fluxgate magnetometer is increasingly developed into micro-scale. Fluxgate magnetometer is made up of three major components consisting of sensing coil, driving coil and magnetic core. The physical characteristics of the coil structure play an important factor in miniaturization as well as in performance of the device. Therefore, investigations on the physical characteristics of the coils are relevant. In this paper, the side-by-side spiral coil structure is investigated in terms of its physical characteristics such as width of the coil and distance between successive coils. The aim is to observe and analyze the effects of varying the coil physical characteristics on certain important parameters that could influence the performance of the device. The work is done with the aid of FEM simulation software, where the physical characteristics of the coils were varied and simulated. With the simulated results, dimension of coils can be appropriately designed to optimize the performance of the device

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Design of Operational Transconductance Amplifiers for voltage to current conversion in gas sensing applications

    Get PDF
    This paper presents a study of Operational Transconductance Amplifiers (OTAs) for voltage to current conversion circuits. The paper includes a comparative analysis of three OTA architectures implemented in 0.35\u3bcm CMOS AMS Technology under \ub1 1.65V power supply voltage. The impact of the OTA topology has been investigated by simulation. The designed OTAs managed to deliver large current values of 10mA and 1mA to the load with a worst-case error of 0.02% under worst-case power supply and temperature conditions and a worst percentage error of 0.12% under process variation for both Miller Compensated and Capacitor Multiplier Compensated OTA. \ua9 2016 AEIT

    Prediction of the Spectrum of a Digital Delta–Sigma Modulator Followed by a Polynomial Nonlinearity

    Get PDF
    This paper presents a mathematical analysis of the power spectral density of the output of a nonlinear block driven by a digital delta-sigma modulator. The nonlinearity is a memoryless third-order polynomial with real coefficients. The analysis yields expressions that predict the noise floor caused by the nonlinearity when the input is constant

    Micromachined vibratory gyroscopes controlled by a high order band-pass sigma delta modulator.

    No full text
    Abstract—This work reports on the design of novel closed-loop control systems for the sense mode of a vibratory-rate gyroscope based on a high-order sigma-delta modulator (SDM). A low-pass and two distinctive bandpass topologies are derived, and their advantages discussed. So far, most closed-loop force-feedback control systems for these sensors were based on low-pass SDM’s. Usually, the sensing element of a vibratory gyroscope is designed with a high quality factor to increase the sensitivity and, hence, can be treated as a mechanical resonator. Furthermore, the output characteristic of vibratory rate gyroscopes is narrowband amplitude- modulated signal. Therefore, a bandpass M is a more appropriate control strategy for a vibratory gyroscope than a low-pass SDM. Using a high-order bandpass SDM, the control system can adopt a much lower sampling frequency compared with a low-pass SDM while achieving a similar noise floor for a given oversampling ratio (OSR). In addition, a control system based on a high-order bandpass SDM is superior as it not only greatly shapes the quantization noise, but also alleviates tonal behavior, as is often seen in low-order SDM control systems, and has good immunities to fabrication tolerances and parameter mismatch. These properties are investigated in this study at system level

    Matrix Methods for the Dynamic Range Optimization of Continuous-TimeGm-CFilters

    Get PDF
    This paper presents a synthesis procedure for the optimization of the dynamic range of continuous-time fully differential G m - C filters. Such procedure builds up on a general extended state-space system representation which provides simple matrix algebra mechanisms to evaluate the noise and distortion performances of filters, as well as, the effect of amplitude and impedance scaling operations. Using these methods, an analytical technique for the dynamic range optimization of weakly nonlinear G m - C filters under power dissipation constraints is presented. The procedure is first explained for general filter structures and then illustrated with a simple biquadratic section

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step
    corecore