1,119 research outputs found

    HTLV-1: Regulating the Balance Between Proviral Latency and Reactivation

    No full text
    HTLV-1 plus-strand transcription begins with the production of doubly-spliced tax/rex transcripts, the levels of which are usually undetectable in freshly isolated peripheral blood mononuclear cells (PBMCs) from HTLV-1-infected individuals. However, the presence of a sustained chronically active cytotoxic T-cell response to HTLV-1 antigens in virtually all HTLV-1-infected individuals, regardless of their proviral load, argues against complete latency of the virus in vivo. There is an immediate burst of plus-strand transcription when blood from infected individuals is cultured ex vivo. How is the HTLV-1 plus strand silenced in PBMCs? Is it silenced in other anatomical compartments within the host? What reactivates the latent provirus in fresh PBMCs? While plus-strand transcription of the provirus appears to be intermittent, the minus-strand hbz transcripts are present in a majority of cells, albeit at low levels. What regulates the difference between the 5′- and 3′-LTR promoter activities and thereby the tax-hbz interplay? Finally, T lymphocytes are a migratory population of cells that encounter variable environments in different compartments of the body. Could these micro-environment changes influence the reactivation kinetics of the provirus? In this review we discuss the questions raised above, focusing on the early events leading to HTLV-1 reactivation from latency, and suggest future research directions

    Immune compromise in HIV-1/HTLV-1 coinfection with paradoxical resolution of CD4 lymphocytosis during antiretroviral therapy: a case report

    Get PDF
    Human immunodeficiency virus type-1 (HIV-1) and human T lymphotropic virus type-1 (HTLV-1) infections have complex effects on adaptive immunity, with specific tropism for, but contrasting effects on, CD4 T lymphocytes: depletion with HIV-1, proliferation with HTLV-1. Impaired T lymphocyte function occurs early in HIV-1 infection but opportunistic infections (OIs) rarely occur in the absence of CD4 lymphopenia. In the unusual case where a HIV-1 infected individual with a high CD4 count presents with recurrent OIs, a clinician is faced with the possibility of a second underlying comorbidity. We present a case of pseudo-adult T cell leukemia/lymphoma (ATLL) in HIV-1/HTLV-1 coinfection where the individual fulfilled Shimoyama criteria for chronic ATLL and had pulmonary Mycobacterium kansasii, despite a high CD4 lymphocyte count. However, there was no evidence of clonal T-cell proliferation by T-cell receptor gene rearrangement studies nor of monoclonal HTLV-1 integration by high-throughput sequencing. Mutually beneficial interplay between HIV-1 and HTLV-1, maintaining high level HIV-1 and HTLV-1 viremia and proliferation of poorly functional CD4 cells despite chronicity of infection is a postulated mechanism. Despite good microbiological response to antimycobacterial therapy, the patient remained systemically unwell with refractory anemia. Subsequent initiation of combined antiretroviral therapy led to paradoxical resolution of CD4 T lymphocytosis as well as HIV-1 viral suppression and decreased HTLV-1 proviral load. This is proposed to be the result of attenuation of immune activation post-HIV virological control. This case illustrates the importance of screening for HTLV-1 in HIV-1 patients with appropriate clinical presentation and epidemiological risk factors and explores mechanisms for the complex interactions on HIV-1/HTLV-1 adaptive immunity

    Adult T-cell leukemia/lymphoma—pathobiology and implications for modern clinical management

    Get PDF
    Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive malignancy that arises in 2-5% of carriers of human T-cell lymphotropic virus type 1 (HTLV-1). The median overall survival of acute and lymphoma subtypes remains approximately 9–13 months and depressingly, with chemotherapy based approaches survival is largely unchanged in the ~40 years since it was first described. There is a clear and urgent need to conduct clinical trials of novel therapies in this disease. A high proviral load (PVL) (>4%, percentage of HTLV-1 infected mononuclear cells), male gender and smoking were previously the only major known risk factors for developing ATL, and so it has been difficult to advise patients about their individual risk of future ATL. Here, we describe the recent evidence that malignant disease does not occur randomly amongst all asymptomatic carriers but is more likely to arise in a subset of high PVL individuals with abnormally abundant clonal expansions of circulating HTLV-1 infected T-cells which typically express CD3dim+ CD4+ CD5-CD7- CD25+ CCR4+ with monoclonal TCRVβ. These clones also typically harbour known ATL driver mutations such as PLCG1, PRKCB, CARD11, STAT3, VAV1, NOTCH1, IRF4, CCR4, CCR7, TP53 and CDKN2, and may be detectable 10 years prior to disease presentation providing an opportunity to identify at risk individuals prior to clinical ATL. We describe the current classification and clinical features of ATL, and the exciting work of the last few years that underpins our new understanding of the genetic and epigenetic landscape with implications for future therapy. Whilst current therapy for aggressive ATL remain largely ineffective, recent advances may allow for early identification of at-risk individuals, and for pre-emptive therapies, and hope for a new era of effective targeted biological agents

    The impact of HTLV-1 on the cellular genome.

    Get PDF
    Human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of adult T-cell leukaemia/lymphoma (ATL), an aggressive CD4+ T-cell malignancy. The mechanisms of leukaemogenesis in ATL are incompletely understood. Insertional mutagenesis has not previously been thought to contribute to the pathogenesis of ATL. However, the recent discovery that HTLV-1 binds the key chromatin architectural protein CTCF raises the hypothesis that HTLV-1 deregulates host gene expression by causing abnormal chromatin looping, bringing the strong HTLV-1 promoter-enhancer near to host genes that lie up to 2Mb from the integrated provirus. Here we review current opinion on the mechanisms of oncogenesis in ATL, with particular emphasis on the local and distant impact of HTLV-1 on the structure and expression of the host genome

    T cell receptor Vβ staining identifies the malignant clone in adult T cell leukemia and reveals killing of leukemia cells by autologous CD8+ T cells

    Get PDF
    There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease

    The human leukemia virus HTLV-1 alters the structure and transcription of host chromatin in cis

    Get PDF
    Chromatin looping controls gene expression by regulating promoter-enhancer contacts, the spread of epigenetic modifications, and the segregation of the genome into transcriptionally active and inactive compartments. We studied the impact on the structure and expression of host chromatin by the human retrovirus HTLV-1. We show that HTLV-1 disrupts host chromatin structure by forming loops between the provirus and the host genome; certain loops depend on the critical chromatin architectural protein CTCF, which we recently discovered binds to the HTLV-1 provirus. We show that the provirus causes two distinct patterns of abnormal transcription of the host genome in cis: bidirectional transcription in the host genome immediately flanking the provirus, and clone-specific transcription in cis at non-contiguous loci up to >300 kb from the integration site. We conclude that HTLV-1 causes insertional mutagenesis up to the megabase range in the host genome in >104 persistently-maintained HTLV-1+ T-cell clones in vivo

    Genome-wide Determinants of Proviral Targeting, Clonal Abundance and Expression in Natural HTLV-1 Infection

    Get PDF
    The regulation of proviral latency is a central problem in retrovirology. We postulate that the genomic integration site of human T lymphotropic virus type 1 (HTLV-1) determines the pattern of expression of the provirus, which in turn determines the abundance and pathogenic potential of infected T cell clones in vivo. We recently developed a high-throughput method for the genome-wide amplification, identification and quantification of proviral integration sites. Here, we used this protocol to test two hypotheses. First, that binding sites for transcription factors and chromatin remodelling factors in the genome flanking the proviral integration site of HTLV-1 are associated with integration targeting, spontaneous proviral expression, and in vivo clonal abundance. Second, that the transcriptional orientation of the HTLV-1 provirus relative to that of the nearest host gene determines spontaneous proviral expression and in vivo clonal abundance. Integration targeting was strongly associated with the presence of a binding site for specific host transcription factors, especially STAT1 and p53. The presence of the chromatin remodelling factors BRG1 and INI1 and certain host transcription factors either upstream or downstream of the provirus was associated respectively with silencing or spontaneous expression of the provirus. Cells expressing HTLV-1 Tax protein were significantly more frequent in clones of low abundance in vivo. We conclude that transcriptional interference and chromatin remodelling are critical determinants of proviral latency in natural HTLV-1 infection
    corecore