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Abstract

There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contrib-

ute to long-term remission of many malignancies. The etiological agent of adult T-cell leuke-

mia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly

immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-pro-

ducing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients

with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used

flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify mono-

clonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL.

Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex

vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse

autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored

the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells

to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was sig-

nificantly enhanced after in vitro culture, and donors with an ATL clone that expressed the

HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL

cells. We conclude that some patients with ATL possess functional tumour-specific CTLs

which could be exploited to contribute to control of the disease.

Author Summary

Human T lymphotropic virus-1 infects T cells, causing them to multiply. In some people,

cellular replication is unchecked, resulting in an aggressive blood cancer called adult T-

cell leukemia/lymphoma. The virus proteins are efficiently recognised as ‘foreign’ by the

immune system in most infected individuals. People with cancer have weak immune

responses to certain viral proteins, however it was not known whether the immune system
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can attack the malignant cells in this disease. In this paper, we developed a method which

allows us to directly monitor malignant cells, and used it to test whether malignant and

non-malignant infected cells are killed by immune cells from people with the cancer. We

found that some people had immune cells which could kill the cancer cells. These observa-

tions are both new and important because they raise the possibility of boosting the

immune response to malignant cells as a novel therapeutic strategy for this aggressive and

hard-to-treat disease.

Introduction

Adult T cell leukemia/lymphoma is a mature T cell malignancy caused by the retrovirus

human T lymphotropic virus-1 (HTLV-1). Four clinical subtypes exist: acute, lymphoma,

chronic and smouldering, which range from highly aggressive to indolent in their clinical

course [1,2]. Advances in chemotherapy protocols have contributed only a modest increase in

overall survival of aggressive subtypes, and few patients receive potentially curative allogeneic

hematopoietic stem cell transplantation (HSCT)[3]. Antiviral drugs (zidovudine and inter-

feron alpha, AZT/IFN)[4–7] and molecular targeted therapy (anti-CCR4, Mogamulizumab)

[8–10] have shown promising results, especially in chronic ATL, but their efficacy in the lym-

phoma and acute subtypes is limited. There is an urgent need for new therapies and strategies

to consolidate existing treatments.

HTLV-1 establishes persistent infection by integration of the provirus into the genomic

DNA of T lymphocytes, and propagates in the host by both clonal proliferation and cell-to-cell

transmission[11,12]. Expression of structural genes on the sense strand of the 9kb genome is

induced by the viral transcriptional transactivator protein Tax, triggering production of viral

particles, cellular activation and proliferation. The antisense strand encodes HTLV-1 b-zip

protein (HBZ), which opposes many of the actions of Tax[13]. HTLV-1+ individuals carry

thousands of long-lived infected CD4+ clones in their peripheral blood, each of which has

arisen from a single infection event[12,14]. Malignant cells in ATL are HTLV-1-infected

clones: in 91% of ATL cases a single dominant proviral integration site makes up over 35% of

the proviral load[15], circulating alongside subdominant populations of polyclonal infected

and uninfected T cells. Although the genomic integration site influences clonal proliferation

and proviral gene expression[16], it does not appear to explain clonal dominance in most cases

of ATL[15]. Spontaneous mutations in the T cell receptor (TCR)/NF-kB[17], CCR4[18], p53

[19] and, Notch-1[20] signalling pathways are frequently observed in malignant clones.

Several lines of evidence indicate that the outcome of HTLV-1 infection is determined by

the equilibrium set between proliferation of infected cells and the activity of abundant, chroni-

cally activated, HTLV-1-specific cytotoxic T lymphocytes [21,22]. Major histocompatibility

complex (MHC) class 1 alleles HLA-A�0201 and C�08 are associated with a low proviral load

[23] in southern Japan. Tax protein is highly immunodominant in the HTLV-1-specific CD8+

response, and tax is silenced or deleted in the dominant clone in over 50% of patients with

ATL, implying the presence of strong CTL selection pressure. Paradoxically, ectopic expres-

sion of Tax can be oncogenic in vivo[24]. The region of the viral genome which encodes HBZ

is highly conserved in ATL[25], suggesting HBZ also has a role in oncogenesis. The ability of

an individual to present peptides from HBZ to CD8+ cells is associated with a low proviral

load[26], however, HBZ evades immune detection by means of low-level protein expression

and weak immunogenicity[26]. In addition, biological actions are exerted by untranslated

HBZ mRNA[25,27].
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ATL patients are commonly immunosuppressed, and frequently present with opportunistic

infections. Previous studies on samples from ATL patients have reported that the frequency

and diversity of HTLV-1-specific CD8+ T cells is significantly lower in ATL patients than in

non-malignant HTLV-1 infection[28,29]. In addition to the silencing of Tax expression, sev-

eral mechanisms by which ATL cells might escape CTL have been proposed. The malignant

clone in 5%-6% of ATL patients carries mutations in HLA-A or -B genes, and the MHC class

1-encoding region in ATL is frequently subject to hypermethylation and copy-number varia-

tion[17]. ATL cells frequently express the regulatory T-cell-associated transcription factor

FoxP3[30] and the coinhibitory ligand PD-L1[31], but it remains unclear whether primary

ATL clones directly suppress CD8+ responses. Indeed, the susceptibility of primary ATL clones

to CD8+-mediated lysis is not known, though rare occurrences of spontaneous disease remis-

sion[32], and successful allogeneic HSCT[33,34] have been reported to involve induction and

maintenance of HTLV-1-specific CTLs[35].

Measuring the rate at which ATL clones are killed by CD8+ cells requires a reliable method

to distinguish ATL clones from both non-malignant HTLV-1 infected cells and uninfected T

cells. We recently published that CADM1 expression identifies 60–70% of infected cells in

HTLV-1 carriers [36]. ATL patients have high frequencies of CADM1+[37],CCR4+[38],

CD25+[1] and CD7−[39] cells in their peripheral blood. These cells often express FoxP3[40]

and low levels of CD3 epsilon [41]. However, this combination of markers is also expressed by

a subset of CD4+ T cells in uninfected donors [42] and asymptomatic HTLV-1 carriers (ACs),

particularly those with a high proviral load [39,43], thus may not be used to directly identify

the ATL clone.

Here, we used TCRVβ subunit staining, immunophenotyping and high-throughput

sequencing to identify clonally expanded populations in a well-characterised cohort of ATL

patients. We show that in some individuals with ATL, the malignant clone is susceptible to

lysis by cultured autologous CD8+ cells. Autologous CD8+ cells from ATL patients preferen-

tially killed targets that expressed the viral sense strand: both Tax+ATL clones and Tax+non-

malignant cells were killed. In all donors, cells which did not express Tax escaped killing by

CD8+ cells.

Results

Flow cytometric quantification of TCRVβ subunits reveals expanded

clones of HTLV-1-infected cells in ATL patients

Peripheral blood mononuclear cells from ATL patients, asymptomatic HTLV-1 carriers and

patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) were

stained with a panel of antibodies specific for 24 TCRVβ subunits (S1 and S2 Tables) and

CADM1.

The frequency distributions of TCRVβ subunits in CADM1+ (which typically carry one

proviral copy per cell[36]) and CADM1− (low proviral load) T cells (both CD4+ and CD8+)

were ascertained by dividing live CD3+ cells into 50 possible groups on the basis of TCRVβ
staining (see Materials and Methods). Linker-mediated PCR (LM-PCR) followed by high-

throughput sequencing (HTS) were performed to corroborate the observed frequency distri-

butions (Fig 1A).

We used an oligoclonality index (OCI, Gini index)[12] to compare the frequency distribu-

tion of TCRVβ subunits (OCI-flow) with the frequency distribution of unique proviral integra-

tion sites (UIS, OCI-UIS). The frequency distribution of TCRVβ subunits in ACs and patients

with HAM/TSP resembled that in healthy donors [44] (S1A and S2 Figs), with no significant

difference in the OCI-flow of infected CADM1+CD3+ cells and the OCI-flow of
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Fig 1. Flow cytometric staining of TCRVβ subunits reveals clonal expansions in ATL patients.

Cryopreserved PBMCs from 52 individuals (28 ATL; 11 AC; 13 HAM) were thawed and stained with a viability stain

followed by antibodies specific for 24 TCRVβ subunits, CD3, CD4, CD8, CADM1, CD7, CD127, CD25 and CCR4.

Proviral genomic integration sites were mapped by LM-PCR and HTS. OCI was calculated using the Gini index, as

previously described [12]. (A) Representative data from one individual with chronic ATL, and one high PVL AC. Pie
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predominantly uninfected CADM1−CD3+ cells (Fig 1B). By contrast, the OCI-flow of

CADM1+CD3+ cells in ATL patients was significantly higher than that of CADM1−CD3+ cells

from the same donor, and CADM1+/−CD3+ cells from donors without malignancy (Fig 1B).

These results indicate that an OCI-flow>0.7 is associated with ATL (see below). In ATL

patients, the OCI-flow for CADM1+CD3+ T cells measured by flow cytometry was signifi-

cantly correlated with the OCI-UIS measured by HTS (Fig 1C). In addition, the absolute fre-

quency of the most abundant UIS detected by HTS was significantly correlated with the

frequency of the most abundant population of T cells which shared a single Vβ subunit (Fig

1C). We therefore refer henceforth to the dominant TCRVβ-expressing population of CD4+

cells, in individuals with an OCI-flow (CADM1+CD3+)> 0.7, as the ‘ATL clone’.

We detected putatively malignant expansions in patients with chronic (n = 12) or acute

(n = 6) leukemia (Fig 1B, S1B and S2 Figs); in 16 cases by direct identification of the TCRVβ
and two cases in which the TCRVβ subunit was not represented in the TCRVβ antibody panel.

Each case had a population of T cells which shared a Vβ subunit comprising >35% of

CADM1+ cells[15], and an OCI-flow of CADM1+CD3+ cells > 0.7. There was no evidence of

preferential transformation of cells expressing particular TCRVβ subunits (S1 Table). Two out

of five lymphoma patients also had CADM1+CD3+ PBMC with an OCI-flow > 0.7. Patients

with leukemic type ATL who had an OCI-flow (CADM1+CD3+)<0.7 were in remission, and

did not have a dominant proviral integration site (>35% of the PVL) detectable by HTS.

Comparison with other ATL cell markers

Direct flow-cytometric identification of clonal HTLV-1-infected populations in ATL permit-

ted detailed assessment of the sensitivity and specificity of other established immunophenoty-

pic markers of ATL. Using multicolour flow cytometry we evaluated co-expression of

phenotypic ATL markers (CD3, CD25, CD7, CCR4 and CADM1) on cells which carried the

respective dominant TCRVβ (designated TCRVβX+) with those which did not (TCRVβX−).

As described in the literature, CD3 epsilon was significantly downregulated on expanded

clones in ATL (Fig 2A and 2B), compared with cells from the same individual which expressed

other TCRVβ subunits. CCR4 was expressed by a median of 98% cells within the malignant

clone; CADM1 by 93%; and CD7 was downregulated on 96% (Fig 2B). CD25 had the poorest

sensitivity of all the markers: a median of 66% of malignant cells were CD25+.

We tested the ability of CD7 and CD25 to discriminate between malignant and non-malig-

nant infected cells by comparing the frequency of expression on CCR4+CADM1+CD4+cells

from individuals with and without malignancy. Although expression of CD7 was significantly

downregulated on infected CCR4+CADM1+ cells versus other CD4+ T cells in all HTLV-

1-infected subjects, CD7 expression was lowest on CCR4+CADM1+ cells from ATL patients

(S3 Fig). In contrast, the frequency of CD25 expression on CCR4+CADM1+ cells did not differ

between the three disease states: ATL, HAM/TSP and AC (S3 Fig). After TCRVβ positivity,

CD7 downregulation was the most specific marker of ATL clones. Thus, the combination of

markers of clonal expansion (TCRVβ+ and CD7low) and infection (CADM1+) allows sensitive

detection and accurate quantification of expanded ATL clones.

charts show the relative frequency distribution of unique integration sites (green), and CD3+ cells (TCRVβ identified:

CD4+, red; CD8+, blue; TCRVβ ‘off panel’: CD4+, light grey; CD8+, dark grey). (B) OCI-flow of CADM1+CD3+ cells

versus OCI-flow of CADM1−CD3+ cells. Statistical analysis: Kruskal-Wallis test with Dunn post-test, 95%

confidence interval (CI). * denotes p<0.05, *** denotes p<0.001. (C) Comparison of LM-PCR/HTS data (n = 28

ATL patients) and CADM1/TCRVβ flow cytometry. Statistical analysis: Spearman correlation.

doi:10.1371/journal.ppat.1006030.g001
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Fig 2. Expression of candidate ATL cell surface markers by the dominant TCRVβ-expressing population. Staining

was performed as described in Fig 1. (A) Representative flow cytometry plots of total live CD3+CD4+ cells from an ATL

patient (LHN) and an AC (HHD). Plots display the most frequently expressed TCRVβ subunit in the respective donor. (B)

Expanded clones are CCR4+CD7−CADM1+. Live CD3+CD4+ T cells from ATL patients (n = 21) with an OCI-flow

(CADM1+CD3+) >0.7 were gated on the basis of expression of the dominant TCRVβ (designated TCRVβX+ or TCRVβX–).

CD8+ Cell Killing of ATL Clones Quantified by TCRVβ Flow Cytometry
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OCI-flow(CADM1+CD3+) > 0.7 indicates a high probability of clinically

evident ATL

Within our cohort of 24 age-matched HTLV-1-infected individuals without malignancy (in

whom the PVL ranged from undetectable to 79 copies per 100 PBMC, S1 Table), the OCI-flow

of CADM1+CD3+ cells did not exceed 0.7. We plotted receiver operator curves (ROC) to eval-

uate the sensitivity and specificity by which the OCI-flow of CADM1+CD3+ cells could identify

individuals with clinically evident ATL (Fig 3), compared with the common diagnostic investi-

gations: enumerating CD7−CD4+ cells and CD25+CD4+ cells. Five ATL patients within the

original cohort who were in clinical remission were excluded from this analysis on the basis of

clinical observations (not on the basis of oligoclonality). Area under the curve (AUC) analysis

rated the diagnostic power of the OCI-flow (CADM1+CD3+)and CD7−CD4+ frequency as

‘excellent’ (AUC 0.9–1), and CD25+CD4+ frequency as ‘good’ (AUC 0.8–0.9), and both tests

had significantly higher diagnostic power than the frequency of CD25+CD4+ T cells (Fig 3,

p = 0.001, OCI-flow (CADM1+CD3+) vs. CD25; p = 0.03, CD7 vs. CD25, one-tailed test [45]).

ATL clones express MHC class 1 and high levels of CADM1

In 16 individuals with a known dominant TCRVβ, all T cells (including ATL clones) expressed

MHC class 1 at a similar intensity (Fig 4A and S4 Fig). CADM1 expression was significantly

higher on ATL clones than on non-malignant infected cells within the same individual, or

CADM1+ cells from ACs (Fig 4B and S4 Fig). In polyclonal infected populations

(CD4+CADM1+ cells in ACs, CADM1+VβX−cells in ATL patients), a median of 11–15% of

CADM1+ cells expressed Tax after overnight culture ([36]; Fig 4C and S4 Fig). By contrast, ATL

clones fell into two distinct groups: those in which<5% of cells expressed Tax (TaxlowATL) and

those in which>5% expressed Tax (TaxhighATL). FoxP3 and PD-L1 were highly expressed in

some cases, by both Taxhigh and Taxlow ATL clones (S5 Fig).

Patient-derived CD8+ cells do not efficiently lyse ATL clones ex vivo

We tested the ability of autologous CD8+ cells to kill malignant clones using an ex vivo cell sur-

vival assay [46]. In order to mimic in vivo CD8+ cell:target cell frequencies, we incubated

CD4+ PBMCs from ATL patients for 18h with a range of ratios of autologous CD8+ T cells and

quantified the absolute number of surviving cells in the following populations: CADM1−CD4+

cells (which have a low proviral load [36]), malignant HTLV-1 infected CADM1+VβX+CD4+

cells, and non-malignant CADM1+VβX−CD4+ cells (Fig 5), which typically carry a single pro-

viral copy per cell. This strategy permitted us to estimate the efficacy by which each subset was

targeted by CD8+ cells in vivo, in the presence of other potential CTL targets. Because previous

reports indicated that ex vivo CD8+ cells from ATL patients had negligible lytic function [28],

purified CD8+ cells were expanded in culture for 2 weeks, both to increase the effector: target

ratio, and to allow potential reactivation of lytic function.

At the effector: target ratios tested, no significant lysis of the ATL clone by autologous ex

vivo CD8+ T cells was detected (Fig 6A). When compared with ACs, CD8+ from ATL patients

also had a markedly reduced ability to lyse non-malignant Tax-expressing CADM1+CD4+

cells (Fig 6). Tax−CADM1+ and CADM1− CD4+ cells were not killed by ex-vivo CD8+ cells in

either cohort. By contrast, after expansion in vitro, cultured CD8+ cells from 3 of 9 donors

Total live CD4+ T cells from PBMC of n = 24 individuals without malignancy (patients with HAM or ACs) were included as

controls. Whiskers represent maximum and minimum values. Statistical analysis: Kruskal-Wallis test with Dunn post-test,

95% confidence interval (CI). * denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001.

doi:10.1371/journal.ppat.1006030.g002
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with ATL killed a proportion of their respective ATL clone (Fig 6B). Addition of 20nM conca-

namycin A blocked killing of ATL cells, indicating that the observed effect is perforin-depen-

dent (S6 Fig), as previously reported [47].

Efficiency of CTL selection: preferential lysis of Taxhigh clones

We observed that the ATL clone was not completely eliminated at any CD4+:CD8+ ratio, even

supraphysiological ratios (Fig 6). All donors (3/3) whose CD8+ cells regained the ability to lyse

the malignant cells had an ATL clone which strongly expressed the proviral sense strand

genes, as detected by intracellular expression of Tax protein (Taxhigh) (Fig 7A). In contrast, the

malignant clones of all other donors in the cohort (6/6) were Taxlow. Within the ATL clone, we

observed a strong preferential lysis of Tax-expressing malignant cells; only one donor lysed

Tax-negative malignant cells (Fig 7A). Between 20–60% of malignant Tax expressing cells

were cleared in each donor (Fig 7A). To quantify the preferential CD8+ targeting of cells that

express the viral plus strand, we calculated for each donor the rate at which Tax-expressing

and non-expressing cells were killed after in vitro culture (Fig 7B). Cultured CD8+ cells killed

Tax-expressing ATL clones at a higher rate than ex vivo CD8+ cells in 3 of 3 cases. In addition,

cultured CD8+ cells from patients with Taxlow clones also had enhanced ability to kill non-

malignant HTLV-1 infected cells which expressed the viral plus strand (Fig 7B).

Discussion

An array of novel anti-cancer immune therapies are currently in clinical trials, which potenti-

ate existing immune responses, and induce tumour-specific immunity by vaccination, or infu-

sion of engineered tumour-specific T cells. Might these approaches be effective in ATL?

We demonstrate that abnormal clonal expansions of HTLV-1-infected T cells are readily

detectable in individuals with ATL by TCRVβ flow cytometry, which is faster, cheaper and less

labour-intensive than the current gold-standard technique of high-throughput sequencing of

Fig 3. OCI-flow of CADM1+CD3+ cells is an excellent diagnostic test for monoclonal integration.

Receiver operator curves illustrating the specificity and sensitivity by which the OCI-flow of CADM1+CD3+

cells, the frequency of CD7−CD4+ or the frequency of CD25+CD4+ cells discriminate individuals with clinically

evident ATL (n = 23) from individuals with non-malignant HTLV-1 infection (n = 24). Individuals previously

diagnosed with ATL which were in clinical remission were excluded from this analysis.

doi:10.1371/journal.ppat.1006030.g003
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Fig 4. Expression HLA-ABC, CADM1 and Tax by CADM1+CD4+ T cells. CD8+ cells were depleted from

PBMCs of 15 ATL patients with a dominant ATL clone detectable by TCRVβ staining, and 10 ACs. Cells were

cultured for 18h, after which they were surface stained with a viability stain followed by antibodies specific for

the most frequently utilised TCRVβ (VβX), CD3, CD4, CD8, CADM1, PD-L1, FoxP3 and HLA-ABC (S2 table;

panels 3, 4, 6 and 7). Cells were then permeabilised and stained with antibodies specific for Tax and FoxP3

and analysed by flow cytometry. Cells from ATL patients and ACs were gated on live CD3+CD4+CADM1+

cells which were positive or negative for the dominant TCRVβX as indicated. Intensity of expression of (A)

MHC class 1 and (B) CADM1. (C) Frequency of Tax expression by ATL clones. Taxhigh ATL clones are plotted

in red, and Taxlow ATL clones are plotted in blue. Statistical analysis: Kruskal-Wallis test with Dunn post-test,

95% CI. * denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001.

doi:10.1371/journal.ppat.1006030.g004
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Fig 5. Experimental design of cell survival assay. PBMCs from each of 9 ATL patients with a dominant ATL clone detectable by

TCRVβ staining were depleted of CD8+ T cells. The CD8− PBMCs (CADM1+CD4+, purple; CADM1−CD4+, yellow) were cultured

overnight either alone or in the presence of autologous CD8+ cells at a range of ratios, after which cells were stained with a viability

stain and antibodies specific for CD3, CD4, CD8, CADM1 and the TCRVβ subunit which was most frequently used in that individual

(‘TCRVβX’). Cells were then permeabilised, stained intracellularly with anti-Tax antibody, and analysed by flow cytometry. Absolute

cell counts of CD3+, CD4+ and CD8+ cells were performed in parallel.

doi:10.1371/journal.ppat.1006030.g005
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proviral integration sites. In this cohort, an oligoclonality index of> 0.7 within

CADM1+CD3+cells reliably identified individuals who had a dominant ATL clone as validated

by high-throughput sequencing. Whilst CD25 expression is frequently high in ATL, we show

that in most individuals, ~40% of cells in the ATL clone are CD25 negative. Over 94% of ATL

clones were CCR4+CADM1+CD7−; the exceptions were one CD7dim ATL clone and one

CADM1− clone. Analysis of TCRVβ expression within the heavily infected CADM1+CD3+

population allows direct flow cytometric analysis of the clonal structure of HTLV-1 infected

cells, and can distinguish ATL patients from age-matched HTLV-1 carriers with high specific-

ity and sensitivity. Whilst we did not have sufficient cases to independently test the diagnostic

power of OCI-flow of CADM1+CD3+ cells in an unrelated cohort of cases and controls, our

Fig 6. Cultured CD8+ cells can kill autologous malignant cells in some donors. CD8 depleted PBMCs from ATL

patients (n = 9) with a known dominant TCRVβwere incubated in the presence of ex vivo (A) or cultured (B) autologous

CD8+ cells at the indicated E:T ratios. After 18h, the absolute number of viable ATL cells (live CD3+CD4+CADM1+TCRVβ+)

was quantified by flow cytometry and used to calculate the proportion of the ATL clone which had been specifically killed in

the presence of CD8+ cells. The proportion of Tax+ and Tax−CADM1+ TCRVβ− cells which were killed was calculated in the

same manner. (C) Ex vivo CD8+ cell killing of Tax+CD3+CD4+CADM1+ cells, Tax−CD3+CD4+CADM1+ cells and

CD3+CD4+CADM1− cells in ACs (n = 10). Subsets of cells which expressed Tax (in both ATL and ACs) are plotted in red.

doi:10.1371/journal.ppat.1006030.g006
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Fig 7. Tax-expressing cells are preferentially killed by cultured autologous CD8+ cells. (A) Selective loss of live

Tax-expressing ATL cells after incubation with cultured CD8+ cells. Extended analysis of data from Fig 6. ATL clones

from three Taxhigh ATL patients (LGZ, LGC and LGB) were gated on the basis of Tax expression as shown. For each

donor, graphs show the percentage of Tax+ or Tax−cells which were killed in the presence of cultured autologous CD8+

cells. Flow plots show Tax and CADM1 expression by live CD3+CD4+CADM1+TCRVβX+ cells from each individual after
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observations indicate that this measure could be useful in the diagnosis of ATL: particularly in

detecting the presence of monoclonal/oligoclonal populations of HTLV-1 infected cells.

We exploited this technique to measure the rate at which ATL clones are lysed by ex vivo,

autologous CTLs. Ex vivo CD8+ cells were unable to kill autologous malignant ATL cells, even

at supraphysiological E:T ratios. In addition, CD8+ mediated killing of non-malignant cells

which express viral proteins was less efficient in ATL patients than in asymptomatic carriers.

In certain patients, in vitro culture of CD8+ cells revealed a population of CD8+ cells which

could kill the ATL clone. This ability was associated with expression of the viral plus-strand

genes by the ATL clone: TaxhighATL clones and Tax expressing non-malignant infected cells

were preferentially targeted by cultured autologous CD8+ cells.

In most subjects in the present study, Tax was expressed on<5% of cells within the ATL

clone after overnight in vitro culture, and Tax-negative cells consistently escaped CD8+-medi-

ated killing. We observed no defect in MHC class 1 expression by ATL clones, and the level of

expression of CADM1 by ATL clones was significantly higher than that in non-malignant

HTLV-1-infected cells. CADM1 expression on the target cell enhances its susceptibility to

CTL killing [36,48]; thus CADM1 could contribute to CD8+ lysis of ATL clones. The level of

expression of CADM1 did not significantly differ between Taxhigh and Taxlow ATL clones: so

while CADM1 is likely to facilitate killing of ATL clones which present epitopes which are rec-

ognised by CD8+ cells, CADM1 expression alone does not appear to expose the ATL clone to

lysis by CD8+ cells. Likewise, the expression levels of PD-L1 and FoxP3 did not differ between

Taxhigh and Taxlow clones in our cohort, so we could not make any inferences on the role of

FoxP3/PD-L1 in the escape of ATL cells in this study.

ATL clones have the potential to present a range of non-self antigens to CTL: for example,

the consistently expressed HTLV-1 antigen HBZ[49], or neoepitopes generated by the frequent

somatic mutations observed in ATL: a recent study detected 6404 somatic mutations in 81

ATL cases by exome sequencing [17]. Apart from the frequent loss of expression of the domi-

nant CTL target antigen Tax by ATL clones, there was no evidence that these clones evaded

the immune response by downregulation of MHC class 1; nevertheless, the bulk of ATL cells

escaped CTL lysis in most individuals. We conclude that the CTL response to antigens pre-

sented by ATL clones is insufficient or suppressed in established disease.

Although the CD8+ response in patients with ATL appears insufficient to maintain control

of ATL cell expansion in vivo, the capacity of autologous CD8+ cells to lyse the malignant

clone that we report here indicates an opportunity for therapeutic intervention by boosting the

CD8+ response, particularly in patients where the ATL clone expressed the viral plus strand.

Immunisation strategies have focused on Tax, and more recently HBZ. Because Tax expression

is intermittent or low in vivo, and frequently deleted in ATL clones, and HBZ is only weakly

immunogenic [50], other HTLV-1 antigens or neoantigens may be more effective CD8+ epi-

topes. Whilst we observed CD8+ killing of Tax expressing cells within ATL clones, boosting

Tax-specific CD8+ responses alone is likely to strongly select for deletion of Tax in malignant

clones: clearly a CTL response which targets multiple antigens would reduce the likelihood of

immune escape. While certain somatic mutations are observed in a high proportion of primary

culture alone or in the presence of CD8+ cells at the highest E:T ratio tested. (B) Comparison of the rate at which ex vivo

and cultured CD8+ cells supress survival of the populations indicated in ATL patients (n = 9) and ACs (n = 10). Subsets of

cells which expressed Tax (in both ATL and ACs) are plotted in red. Data from Fig 6 was analysed by nonlinear

regression to estimate the % change observed in each population with each 1% increase in CD8+ cells present in the co-

culture. A negative rate indicates that number of viable target cells recovered from the co-culture was greater in the

presence of CD8+ cells versus in the absence of CD8+ cells. Statistical analysis (CADM1+TCRVβ− groups only):

Wilcoxon matched pairs test, two tailed, 95% confidence interval.

doi:10.1371/journal.ppat.1006030.g007
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ATL clones[17], the combination of neoepitopes and the individual’s HLA type is unique for

most individuals with ATL. Immunisation with epitopes from autologous ATL clones could

elicit a broader cellular immune response to the malignancy in comparison with immunisation

with HTLV-1 epitopes alone. Finally, the ability to maintain long-term populations of effector

cells will be a critical factor determining the efficacy of the ATL-specific CD8+ response.

Materials and Methods

Ethics statement

Donors attended the National Centre for Human Retrovirology (Imperial College Healthcare

NHS Trust, St Mary’s Hospital, London). Written informed consent was obtained and

research was conducted under the governance of the Communicable Diseases Research Group

Tissue Bank, approved by the UK National Research Ethics Service (09/H0606/106, 15/SC/

0089).

Clinical samples

All ATL subtypes were included (S1 Table). PBMC were isolated from whole blood by density-

gradient centrifugation using histopaque-1077 (Sigma-Aldrich, Poole) from EDTA-anticoagu-

lated blood. Isolated PBMCs were washed twice in PBS then cryopreserved in FCS (Life tech-

nologies, Paisley) with 10% dimethysulfoxide (Sigma-Aldrich).

Proviral load estimation and mapping of proviral integration sites

Genomic DNA was extracted using a DNeasy kit (Qiagen, Manchester), according to the man-

ufacturer’s instructions, and proviral load was estimated as described in Manivannan et al,

2016 [36]. Genomic DNA (20 ng, 6.7 ng or 2.2 ng in 4 μl H2O) was subjected to thermal

cycling in the presence of FastSYBR (Life Technologies) master mix and the following primer

pairs: SK43/SK44- 5’CGGATACCCAGTCTACGTGT3’ /5’GAGCCGATAACGCGTCC

ATCG3’ (tax gene) or GAPDHF/GAPDHR- 5’AACAGCGACACCCATCCTC3’/5’ CATAC

CAGGAAATGAGCTTGACAA3’ (gapdh gene). DNA amplification was monitored in real

time with a QuantStudio7 thermal cycler (Life technologies). DNA from a naturally-infected

primary T cell clone which contained a single-copy of tax and two copies of gapdh as used as a

standard. The proportion of PBMC which carry the provirus was estimated as follows: (copies

of tax)/(2�copy number of gapdh)�100. Where > 1 copy of Tax is detected per 2 copies of

GAPDH, the value exceeds 100%. Linker-mediated (LM)-PCR, high-throughput sequencing,

data extraction and analysis of viral integration sites were carried out as described in Gillet

et al[12]. Random fragments of genomic DNA (1 μg) generated by sonication were ligated to a

partially double-stranded DNA adaptor. Nested PCR (two rounds) was used to amplify the

region between the HTLV-1 LTR and the adaptor. Amplicons generated from adaptors with

unique 6bp barcodes were combined into libraries; following which, sequence data from

paired-end 50 bp reads and a 6 bp index (barcode) read were acquired on an Illumina HiSeq/

MiSeq platform. Paired reads were then aligned to a human genome reference (Hg18). The

number of individual cells which were sequenced within a given HTLV-1 infected clone were

estimated by quantifying the number of distinct genomic shear sites generated by sonication

(read2) for each paired unique integration site (junction between the provirus and human

genome- read 1), and correcting to a calibration curve. The absolute abundance of unique inte-

gration sites per 100 PBMC was estimated by combining the proviral load and relative abun-

dance of each clone.
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The oligoclonality index (OCI) was used as a metric to compare the clone frequency distri-

bution between samples. This was based directly on the Gini index [51], which calculates the

relative inequality within a given distribution. The OCI was computed using the reldist pack-

age (http://CRAN.R-project.org/package=reldist) in R (http://www.R-project.org/). Values

range between 0 and 1, with 0 indicating that all clones make up an equal proportion of the

load, and 1 indicating that a single clone dominates completely [12].

Flow cytometric analysis

Flow cytometric staining was performed as previously described [50] using panels of antibod-

ies and stains outlined in S2 Table. Cells (3x 105-2x106) were stained for 5 min with 1 μl/ml fix-

able Live/Dead blue viability stain (Life technologies). After incubation cells were washed once

with FACS buffer (PBS containing 7% normal goat serum). Surface molecules were stained for

20 min at room temperature (RT) with the antibodies listed in S2 Table. In order to quantify

the frequency of T cells utilising each TCRVβ subunit, eight PBMC samples were stained with

three anti-TCRVβ antibodies in parallel using the Beckman Coulter IOTest Beta mark kit. For

the CD8+ killing experiments, PBMC were stained with an anti-TCRVβ antibody specific for

the subunit most frequently utilised in that donor. Biotinylated antibodies were detected by

staining with streptavidin-PeCy7 or -BV421 (Biolegend), 10 min at RT in FACS buffer. To

stain intracellular antigens, cells were fixed and permeabilised using FoxP3 staining buffers

(eBioscience, SanDiego), and stained with anti-Tax AF488 or anti-FoxP3 for 25 min at RT.

Cells which were surface stained only were fixed with 2% paraformaldehyde in PBS for 20 min

at RT. Data was acquired using a BD LSRFortessa, and analysed using Kaluza software. Gating

strategy is outlined in S7 and S8 Figs.

Analysis of TCRVβ oligoclonality

The frequency of live CADM1+CD4+CD3+ cells which bound each anti-TCRVβ antibody was

expressed as a percentage of total live CD3+ T cells. In order to estimate the frequency of T

cells expressing Vβ subunits which were not recognised by antibodies in the panel, the sum of

all positively identified TCRVβ subunits was subtracted from the total frequency of live

CADM1+CD4+ within CD3+ cells. The frequencies of TCRVβ-expressing live

CADM1+CD8+CD3+ cells were also calculated in the same manner, as CADM1+CD8+ cells

are also heavily infected with HTLV-1 [36]. The resulting 50 frequencies (including instances

where a particular population was undetectable within CD3+ cells), were used to compute the

oligoclonality index as described for the proviral integration site data. To avoid introducing

sampling error in the case of low PVL (and thus low frequencies of CADM1+ cells) flow cyto-

metric data from donors for which<500 CADM1+ events were acquired were excluded from

this analysis.

Cell survival assay

CD8+ cells were isolated from cryopreserved PBMC by positive selection using magnetic beads

(Miltenyi Biotech) following the manufacturer’s protocol. The CD8+ fraction was placed in

culture at 5 x105 cells/ml for 13 days in the presence of 1 μg/ml phytohemagluttinin-L (Sigma

Aldrich) and 100 IU/ml IL-2 (Promocell). At three day intervals, 50% of the culture medium

was replaced and supplemented with 100 IU/ml IL-2. Cells were split as required. Flow cyto-

metric analysis indicated that the mean frequency of live CD8+ cells in each culture was 99.6%;

with a mean residual contamination of on average 0.28% of the ATL clone from that donor.

On day 13, CD8+ cells were depleted from a second vial of cryopreserved PBMC. Cultured or

freshly isolated ex-vivo CD8+ cells were added to between 3x105 and 5x105 CD8− PBMCs at a
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range of effector: target (E:T) ratios in duplicate: CD8-depleted), the natural CD8+:CD4+ ratio

(median 1:23), 1:4 and 1:2 as permitted by the number of CD8+ cells recovered. As signifi-

cantly greater numbers of cultured CD8+ cells were recovered (versus ex vivo CD8+ cells)

ratios of 1:1, 2:1 and 4:1 were tested where possible. Cells were co-cultured 1ml RPMI contain-

ing 10% FCS, 2 mM L-glutamine, 50 U/ml penicillin, 50 μg/ml streptomycin (Gibco) and

20 μg/ml DNAse (Sigma). After 18h, a 100 μl sample of each culture was harvested in order to

count the absolute numbers of CD3+, CD4+ and CD8+ cells present. This was performed by

adding 50 μl of an antibody master mix containing 1 μl anti CD8 AF700, 0.5 μl anti-CD3

BV510 and 0.25 μl anti-CD4 BV605 to each sample. Samples were incubated at RT for 30 min,

after which 150 μl 2% paraformaldehyde in PBS was added, without any centrifugation/wash-

ing steps. Prior to flow cytometric analysis, 10 μl of CountBright absolute counting beads (Life

Technologies) were added to each tube. The number of cells surviving was calculated as fol-

lows: # cells in tube = (# cells collected / # beads collected) × total # beads added to the tube.

The remaining portion of each sample was analysed by flow cytometry as described above

using the panel of antibodies outlined in S2 table.

Analysis of cell survival assay

The relative frequency of cells in each subset was obtained using the gating strategy outlined in

S8 Fig. If the total number of CD4+ cells in the tube changed during the course of experiment,

frequencies were normalised to the absolute count of CD4+ cells in the CD8-depleted culture

condition. In addition, the exact E:T ratio (total CD3+CD8+ cells: total CD3+CD4+) which was

achieved in the co-culture was quantified in each case.

Estimation of the rate of lysis of target populations

The rate at which cells in a given subpopulation of cells were cleared (% target cells killed/%

CD8/day) was estimated in each subject as described in Asquith et al [46] using the following

equation: dy/dt = c- εyz; where y is the percentage of targets within total CD4+ cells, c is the

rate of antigen presentation (assumed to be constant during the short-term culture), ε is the

CD8+ cell-mediated lytic efficiency, and z is the proportion of CD3+ cells that are CD8+. This

model was solved analytically and fitted to the data using nonlinear least-squares regression

(SPSS v22).

Supporting Information

S1 Table. Blood donor information.

(XLSX)

S2 Table. Antibodies used.

(XLSX)

S1 Fig. Frequency of TCRVβ subsets. (A) Frequency of CD4+TCRVβ+ populations as a per-

centage of total live CD3+ cells. (B) Size of largest possible clone by ATL subtype.

(TIF)

S2 Fig. Normal range of maximum clone frequency in non-malignant HTLV-1 infected

donors.

(TIF)

S3 Fig. High frequencies of CCR4+CADM1+CD7− cells in donors with ATL.

(TIF)
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S4 Fig. Example staining for HLA-ABC, Tax, FoxP3 and PD-L1.

(TIF)

S5 Fig. PD-L1 and FoxP3 expression.

(TIF)

S6 Fig. Killing of ATL cells and non-malignant infected cells is inhibited in the presence of

20 nM Concanamycin A.

(TIF)

S7 Fig. Gating strategy for TCRVβ flow cytometric analysis.

(TIF)

S8 Fig. Gating strategy used in cell survival assay. (A) Gating strategy used for multiparame-

ter analysis (B) Gating strategy for absolute T cell counts.

(TIF)

Acknowledgments

The authors thank the blood donors who contributed to this study and the clinical and

research staff at the HTLV-1 clinic in St Mary’s Hospital. We thank the St Mary’s flow cytome-

try core facility, Yanping Guo and Malte Paulsen; Laurence Game and Marian Dore of the

Genomics Laboratory, MRC Clinical Sciences Centre, Hammersmith Hospital, London; and

the High Performance Computing service staff at Imperial College. Many thanks also to

Maria-Antonietta Demontis, Huseini Kagdi, Silva Hilburn, Kiruthika Manivannan, Becca

Asquith, Masao Matsuoka, Yorifumi Satou and Kenji Sugata for advice and helpful

discussions.

Author Contributions

Conceived and designed the experiments: AGR PF GPT CRMB.

Performed the experiments: AGR AW.

Analyzed the data: AGR AM.

Contributed reagents/materials/analysis tools: YT LBMC PF GPT.

Wrote the paper: AGR LBMC GPT CRMB.

Recruited patients: LBMC PF GPT.

References
1. Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lym-

phoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol. 1991; 79: 428–437.

PMID: 1751370

2. Katsuya H, Ishitsuka K, Utsunomiya A, Hanada S, Eto T, Moriuchi Y, et al. Treatment and survival

among 1594 patients with ATL. Blood. 2015; 126: 2570–7. doi: 10.1182/blood-2015-03-632489 PMID:

26361794

3. Utsunomiya A, Choi I, Chihara D, Seto M. Recent advances in the treatment of adult T-cell leukemia-

lymphomas. Cancer Sci. 2015; 106: 344–351. doi: 10.1111/cas.12617 PMID: 25613789

4. Hermine O, Bouscary D, Gessain A, Turlure P, Leblond V, Franck N, et al. Brief report: treatment of

adult T-cell leukemia-lymphoma with zidovudine and interferon alfa. N Engl J Med. 1995; 332: 1749–51.

doi: 10.1056/NEJM199506293322604 PMID: 7760891

CD8+ Cell Killing of ATL Clones Quantified by TCRVβ Flow Cytometry

PLOS Pathogens | DOI:10.1371/journal.ppat.1006030 November 28, 2016 17 / 20

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006030.s006
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006030.s007
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006030.s008
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006030.s009
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006030.s010
http://www.ncbi.nlm.nih.gov/pubmed/1751370
http://dx.doi.org/10.1182/blood-2015-03-632489
http://www.ncbi.nlm.nih.gov/pubmed/26361794
http://dx.doi.org/10.1111/cas.12617
http://www.ncbi.nlm.nih.gov/pubmed/25613789
http://dx.doi.org/10.1056/NEJM199506293322604
http://www.ncbi.nlm.nih.gov/pubmed/7760891


5. Gill P, Harrington W, Kaplan M, Ribeiro R, Bennett J, Liebman H, et al. Treatment of adult T-cell leuke-

mia-lymphoma with a combination of interferon alfa and zidovudine. N Engl J Med. 1995; 332: 1744–

1748. doi: 10.1056/NEJM199506293322603 PMID: 7760890

6. Hodson A, Crichton S, Montoto S, Mir N, Matutes E, Cwynarski K, et al. Use of Zidovudine and Inter-

feron Alfa With Chemotherapy Improves Survival in Both Acute and Lymphoma Subtypes of Adult T-

Cell Leukemia/Lymphoma. J Clin Oncol. 2011; 29: 4696–4701. doi: 10.1200/JCO.2011.35.5578 PMID:

22042945

7. Bazarbachi A, Plumelle Y, Ramos JC, Tortevoye P, Otrock Z, Taylor G, et al. Meta-analysis on the use

of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the

leukemic subtypes. J Clin Oncol. 2010; 28: 4177–4183. doi: 10.1200/JCO.2010.28.0669 PMID:

20585095

8. Ishii T, Ishida T, Utsunomiya A, Inagaki A, Yano H, Komatsu H, et al. Defucosylated humanized anti-

CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/

lymphoma. Clin Cancer Res. 2010; 16: 1520–31. doi: 10.1158/1078-0432.CCR-09-2697 PMID:

20160057

9. Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al. Defucosylated anti-CCR4 mono-

clonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J

Clin Oncol. 2012; 30: 837–42. doi: 10.1200/JCO.2011.37.3472 PMID: 22312108

10. Ishida T, Jo T, Takemoto S, Suzushima H, Uozumi K, Yamamoto K, et al. Dose-intensified chemother-

apy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukae-

mia-lymphoma: a randomized phase II study. Br J Haematol. 2015; 169: 672–82. doi: 10.1111/bjh.

13338 PMID: 25733162

11. Igakura T, Stinchcombe JC, Goon PKC, Taylor GP, Weber JN, Griffiths GM, et al. Spread of HTLV-I

between lymphocytes by virus-induced polarization of the cytoskeleton. Science. 2003; 299: 1713–6.

doi: 10.1126/science.1080115 PMID: 12589003

12. Gillet NA, Malani N, Melamed A, Gormley N, Carter R, Bentley D, et al. The host genomic environment

of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood. 2011; 117: 3113–

22. doi: 10.1182/blood-2010-10-312926 PMID: 21228324

13. Matsuoka M, Yasunaga J. Human T-cell leukemia virus type 1: replication, proliferation and propagation

by Tax and HTLV-1 bZIP factor. Curr Opin Virol. 2013; 3: 684–91. doi: 10.1016/j.coviro.2013.08.010

PMID: 24060211

14. Cook LB, Rowan AG, Melamed A, Taylor GP, Bangham CRM. HTLV-1-infected T cells contain a single

integrated provirus in natural infection. Blood. 2012; 120: 3488–90. doi: 10.1182/blood-2012-07-445593

PMID: 22955925

15. Cook LB, Melamed A, Niederer H, Valganon M, Laydon D, Foroni L, et al. The role of HTLV-1 clonality,

proviral structure, and genomic integration site in adult T-cell leukemia/lymphoma. Blood. 2014; 123:

3925–31. doi: 10.1182/blood-2014-02-553602 PMID: 24735963

16. Melamed A, Laydon DJ, Gillet NA, Tanaka Y, Taylor GP, Bangham CRM. Genome-wide determinants

of proviral targeting, clonal abundance and expression in natural HTLV-1 infection. PLoS Pathog. 2013;

9: e1003271. doi: 10.1371/journal.ppat.1003271 PMID: 23555266

17. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular

analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015; 47: 1304–15. doi: 10.1038/ng.3415

PMID: 26437031

18. Nakagawa M, Schmitz R, Xiao W, Goldman CK, Xu W, Yang Y, et al. Gain-of-function CCR4 mutations

in adult T cell leukemia/lymphoma. J Exp Med. 2014; 211: 2497–505. doi: 10.1084/jem.20140987

PMID: 25488980

19. Nishimura S, Asou N, Suzushima H, Okubo T, Fujimoto T, Osato M, et al. p53 gene mutation and loss

of heterozygosity are associated with increased risk of disease progression in adult T cell leukemia.

Leukemia. 1995; 9: 598–604. PMID: 7723391

20. Pancewicz J, Taylor JM, Datta A, Baydoun HH, Waldmann T a, Hermine O, et al. Notch signaling con-

tributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-

cell leukemia. Proc Natl Acad Sci U S A. 2010; 107: 16619–24. doi: 10.1073/pnas.1010722107 PMID:

20823234

21. Asquith B, Bangham CRM. How does HTLV-I persist despite a strong cell-mediated immune response?

Trends Immunol. 2008; 29: 4–11. doi: 10.1016/j.it.2007.09.006 PMID: 18042431

22. Asquith B, Zhang Y, Mosley AJ, de Lara CM, Wallace DL, Worth A, et al. In vivo T lymphocyte dynamics

in humans and the impact of human T-lymphotropic virus 1 infection. Proc Natl Acad Sci U S A. 2007;

104: 8035–8040. doi: 10.1073/pnas.0608832104 PMID: 17483473

CD8+ Cell Killing of ATL Clones Quantified by TCRVβ Flow Cytometry

PLOS Pathogens | DOI:10.1371/journal.ppat.1006030 November 28, 2016 18 / 20

http://dx.doi.org/10.1056/NEJM199506293322603
http://www.ncbi.nlm.nih.gov/pubmed/7760890
http://dx.doi.org/10.1200/JCO.2011.35.5578
http://www.ncbi.nlm.nih.gov/pubmed/22042945
http://dx.doi.org/10.1200/JCO.2010.28.0669
http://www.ncbi.nlm.nih.gov/pubmed/20585095
http://dx.doi.org/10.1158/1078-0432.CCR-09-2697
http://www.ncbi.nlm.nih.gov/pubmed/20160057
http://dx.doi.org/10.1200/JCO.2011.37.3472
http://www.ncbi.nlm.nih.gov/pubmed/22312108
http://dx.doi.org/10.1111/bjh.13338
http://dx.doi.org/10.1111/bjh.13338
http://www.ncbi.nlm.nih.gov/pubmed/25733162
http://dx.doi.org/10.1126/science.1080115
http://www.ncbi.nlm.nih.gov/pubmed/12589003
http://dx.doi.org/10.1182/blood-2010-10-312926
http://www.ncbi.nlm.nih.gov/pubmed/21228324
http://dx.doi.org/10.1016/j.coviro.2013.08.010
http://www.ncbi.nlm.nih.gov/pubmed/24060211
http://dx.doi.org/10.1182/blood-2012-07-445593
http://www.ncbi.nlm.nih.gov/pubmed/22955925
http://dx.doi.org/10.1182/blood-2014-02-553602
http://www.ncbi.nlm.nih.gov/pubmed/24735963
http://dx.doi.org/10.1371/journal.ppat.1003271
http://www.ncbi.nlm.nih.gov/pubmed/23555266
http://dx.doi.org/10.1038/ng.3415
http://www.ncbi.nlm.nih.gov/pubmed/26437031
http://dx.doi.org/10.1084/jem.20140987
http://www.ncbi.nlm.nih.gov/pubmed/25488980
http://www.ncbi.nlm.nih.gov/pubmed/7723391
http://dx.doi.org/10.1073/pnas.1010722107
http://www.ncbi.nlm.nih.gov/pubmed/20823234
http://dx.doi.org/10.1016/j.it.2007.09.006
http://www.ncbi.nlm.nih.gov/pubmed/18042431
http://dx.doi.org/10.1073/pnas.0608832104
http://www.ncbi.nlm.nih.gov/pubmed/17483473


23. Jeffery KJ, Usuku K, Hall SE, Matsumoto W, Taylor GP, Procter J, et al. HLA alleles determine human

T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl

Acad Sci U S A. 1999; 96: 3848–53. PMID: 10097126

24. Hasegawa H, Sawa H, Lewis MJ, Orba Y, Sheehy N, Yamamoto Y, et al. Thymus-derived leukemia-

lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med. 2006;

12: 466–72. doi: 10.1038/nm1389 PMID: 16550188

25. Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA sup-

ports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A. 2006; 103: 720–5. doi: 10.

1073/pnas.0507631103 PMID: 16407133

26. Macnamara A, Rowan A, Hilburn S, Kadolsky U, Fujiwara H, Suemori K, et al. HLA class I binding of

HBZ determines outcome in HTLV-1 infection. PLoS Pathog. 2010; 6: e1001117. doi: 10.1371/journal.

ppat.1001117 PMID: 20886101

27. Mitobe Y, Yasunaga J-I, Furuta R, Matsuoka M. HTLV-1 bZIP Factor RNA and Protein Impart Distinct

Functions on T-cell Proliferation and Survival. Cancer Res. 2015; 75: 4143–52. doi: 10.1158/0008-

5472.CAN-15-0942 PMID: 26383166

28. Arnulf B, Thorel M, Poirot Y, Tamouza R, Boulanger E, Jaccard A, et al. Loss of the ex vivo but not the

reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients with

adult T-cell leukemia/lymphoma. Leukemia. 2004; 18: 126–32. doi: 10.1038/sj.leu.2403176 PMID:

14574331

29. Kozako T, Arima N, Toji S, Masamoto I, Akimoto M, Hamada H, et al. Reduced frequency, diversity,

and function of human T cell leukemia virus type 1-specific CD8+ T cell in adult T cell leukemia patients.

J Immunol. 2006; 177: 5718–26. PMID: 17015761

30. Toulza F, Heaps A, Tanaka Y, Taylor GP, Bangham CRM. High frequency of CD4+FoxP3+ cells in

HTLV-1 infection: inverse correlation with HTLV-1-specific CTL response. Blood. 2008; 111: 5047–53.

doi: 10.1182/blood-2007-10-118539 PMID: 18094326

31. Kozako T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y, et al. PD-1/PD-L1 expression in

human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia.

2009; 23: 375–82. doi: 10.1038/leu.2008.272 PMID: 18830259

32. Jinnohara T, Tsujisaki M, Sasaki S, Hinoda Y, Imai K. Cytotoxic activity in a case of adult T-cell leuke-

mia/lymphoma with spontaneous regression. Int J Hematol. 1997; 65: 293–8. PMID: 9114601

33. Tanaka Y, Nakasone H, Yamazaki R, Wada H, Ishihara Y, Kawamura K, et al. Long-term persistence of

limited HTLV-I Tax-specific cytotoxic T cell clones in a patient with adult T cell leukemia/lymphoma after

allogeneic stem cell transplantation. J Clin Immunol. 2012; 32: 1340–52. doi: 10.1007/s10875-012-

9729-5 PMID: 22763862

34. Harashima N, Kurihara K, Utsunomiya A, Tanosaki R, Hanabuchi S, Masuda M, et al. Graft-versus-Tax

response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res.

2004; 64: 391–9. PMID: 14729650

35. Rowan AG, Bangham CRM. Is There a Role for HTLV-1-Specific CTL in Adult T-Cell Leukemia/Lym-

phoma? Leuk Res Treatment. 2012; 2012: 391953. doi: 10.1155/2012/391953 PMID: 23259066

36. Manivannan K, Rowan AG, Tanaka Y, Taylor GP, Bangham CRM. CADM1/TSLC1 Identifies HTLV-1-

Infected Cells and Determines Their Susceptibility to CTL-Mediated Lysis. Ross SR, editor. PLOS

Pathog. 2016; 12: e1005560. doi: 10.1371/journal.ppat.1005560 PMID: 27105228

37. Sasaki H, Nishikata I, Shiraga T, Akamatsu E, Fukami T, Hidaka T, et al. Overexpression of a cell adhe-

sion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood.

2005; 105: 1204–13. doi: 10.1182/blood-2004-03-1222 PMID: 15471956

38. Ishida T, Utsunomiya A, Iida S, Inagaki H, Takatsuka Y, Kusumoto S, et al. Clinical significance of

CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and

unfavorable outcome. Clin Cancer Res. 2003; 9: 3625–34. PMID: 14506150

39. Kobayashi S, Tian Y, Ohno N, Yuji K, Ishigaki T, Isobe M, et al. The CD3 versus CD7 plot in multicolor

flow cytometry reflects progression of disease stage in patients infected with HTLV-I. Vartanian J-P, edi-

tor. PLoS One. 2013; 8: e53728. doi: 10.1371/journal.pone.0053728 PMID: 23349737

40. Karube K, Ohshima K, Tsuchiya T, Yamaguchi T, Kawano R, Suzumiya J, et al. Expression of FoxP3, a

key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol.

2004; 126: 81–4. doi: 10.1111/j.1365-2141.2004.04999.x PMID: 15198736

41. Tian Y, Kobayashi S, Ohno N, Isobe M, Tsuda M, Zaike Y, et al. Leukemic T cells are specifically

enriched in a unique CD3(dim) CD7(low) subpopulation of CD4(+) T cells in acute-type adult T-cell leu-

kemia. Cancer Sci. 2011; 102: 569–77. doi: 10.1111/j.1349-7006.2010.01833.x PMID: 21205081

42. Reinhold U, Abken H. CD4+ CD7- T cells: a separate subpopulation of memory T cells? J Clin Immunol.

1997; 17: 265–71. PMID: 9258765

CD8+ Cell Killing of ATL Clones Quantified by TCRVβ Flow Cytometry

PLOS Pathogens | DOI:10.1371/journal.ppat.1006030 November 28, 2016 19 / 20

http://www.ncbi.nlm.nih.gov/pubmed/10097126
http://dx.doi.org/10.1038/nm1389
http://www.ncbi.nlm.nih.gov/pubmed/16550188
http://dx.doi.org/10.1073/pnas.0507631103
http://dx.doi.org/10.1073/pnas.0507631103
http://www.ncbi.nlm.nih.gov/pubmed/16407133
http://dx.doi.org/10.1371/journal.ppat.1001117
http://dx.doi.org/10.1371/journal.ppat.1001117
http://www.ncbi.nlm.nih.gov/pubmed/20886101
http://dx.doi.org/10.1158/0008-5472.CAN-15-0942
http://dx.doi.org/10.1158/0008-5472.CAN-15-0942
http://www.ncbi.nlm.nih.gov/pubmed/26383166
http://dx.doi.org/10.1038/sj.leu.2403176
http://www.ncbi.nlm.nih.gov/pubmed/14574331
http://www.ncbi.nlm.nih.gov/pubmed/17015761
http://dx.doi.org/10.1182/blood-2007-10-118539
http://www.ncbi.nlm.nih.gov/pubmed/18094326
http://dx.doi.org/10.1038/leu.2008.272
http://www.ncbi.nlm.nih.gov/pubmed/18830259
http://www.ncbi.nlm.nih.gov/pubmed/9114601
http://dx.doi.org/10.1007/s10875-012-9729-5
http://dx.doi.org/10.1007/s10875-012-9729-5
http://www.ncbi.nlm.nih.gov/pubmed/22763862
http://www.ncbi.nlm.nih.gov/pubmed/14729650
http://dx.doi.org/10.1155/2012/391953
http://www.ncbi.nlm.nih.gov/pubmed/23259066
http://dx.doi.org/10.1371/journal.ppat.1005560
http://www.ncbi.nlm.nih.gov/pubmed/27105228
http://dx.doi.org/10.1182/blood-2004-03-1222
http://www.ncbi.nlm.nih.gov/pubmed/15471956
http://www.ncbi.nlm.nih.gov/pubmed/14506150
http://dx.doi.org/10.1371/journal.pone.0053728
http://www.ncbi.nlm.nih.gov/pubmed/23349737
http://dx.doi.org/10.1111/j.1365-2141.2004.04999.x
http://www.ncbi.nlm.nih.gov/pubmed/15198736
http://dx.doi.org/10.1111/j.1349-7006.2010.01833.x
http://www.ncbi.nlm.nih.gov/pubmed/21205081
http://www.ncbi.nlm.nih.gov/pubmed/9258765


43. Kobayashi S, Watanabe E, Ishigaki T, Ohno N, Yuji K, Nakano K, et al. Advanced human T-cell leuke-

mia virus type 1 carriers and early-stage indolent adult T-cell leukemia-lymphoma are indistinguishable

based on CADM1 positivity in flow cytometry. Cancer Sci. 2015; 106: 598–603. doi: 10.1111/cas.12639

PMID: 25703103

44. van den Beemd R, Boor PP, van Lochem EG, Hop WC, Langerak AW, Wolvers-Tettero IL, et al. Flow

cytometric analysis of the Vbeta repertoire in healthy controls. Cytometry. 2000; 40: 336–45. PMID:

10918284

45. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic

(ROC) curve. Radiology. 1982; 143: 29–36. doi: 10.1148/radiology.143.1.7063747 PMID: 7063747

46. Asquith B, Mosley AJ, Barfield A, Marshall SEF, Heaps A, Goon P, et al. A functional CD8+ cell assay

reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lympho-

tropic virus type 1 proviral load. J Gen Virol. 2005; 86: 1515–23. doi: 10.1099/vir.0.80766-0 PMID:

15831965

47. Hanon E, Hall S, Taylor GP, Saito M, Davis R, Tanaka Y, et al. Abundant Tax protein expression in CD4

+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lym-

phocytes. Blood. 2000; 95: 1386–1392. PMID: 10666215

48. Boles KS, Barchet W, Diacovo T, Cella M, Colonna M. The tumor suppressor TSLC1/NECL-2 triggers

NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood. 2005; 106: 779–

86. doi: 10.1182/blood-2005-02-0817 PMID: 15811952

49. Sugata K, Yasunaga J-I, Mitobe Y, Miura M, Miyazato P, Kohara M, et al. Protective effect of cytotoxic T

lymphocytes targeting HTLV-1 bZIP factor. Blood. 2015; 126: 1095–105. doi: 10.1182/blood-2015-04-

641118 PMID: 26063164

50. Rowan AG, Suemori K, Fujiwara H, Yasukawa M, Tanaka Y, Taylor GP, et al. Cytotoxic T lymphocyte

lysis of HTLV-1 infected cells is limited by weak HBZ protein expression, but non-specifically enhanced

on induction of Tax expression. Retrovirology. 2014; 11: 116. doi: 10.1186/s12977-014-0116-6 PMID:

25499803

51. Gini C. Variabilita e Mutuabilita. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche.

Cuppini C, editor. Bologna, Italy; 1912.

CD8+ Cell Killing of ATL Clones Quantified by TCRVβ Flow Cytometry

PLOS Pathogens | DOI:10.1371/journal.ppat.1006030 November 28, 2016 20 / 20

http://dx.doi.org/10.1111/cas.12639
http://www.ncbi.nlm.nih.gov/pubmed/25703103
http://www.ncbi.nlm.nih.gov/pubmed/10918284
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://dx.doi.org/10.1099/vir.0.80766-0
http://www.ncbi.nlm.nih.gov/pubmed/15831965
http://www.ncbi.nlm.nih.gov/pubmed/10666215
http://dx.doi.org/10.1182/blood-2005-02-0817
http://www.ncbi.nlm.nih.gov/pubmed/15811952
http://dx.doi.org/10.1182/blood-2015-04-641118
http://dx.doi.org/10.1182/blood-2015-04-641118
http://www.ncbi.nlm.nih.gov/pubmed/26063164
http://dx.doi.org/10.1186/s12977-014-0116-6
http://www.ncbi.nlm.nih.gov/pubmed/25499803

