502 research outputs found
Current tidal power technologies and their suitability for small-scale applications in shallow near-shore areas
A considerable body of research is currently being performed to quantify available tidal energy resources and to develop efficient devices with which to harness them. This work is naturally focussed on maximising power generation from the most promising sites, and a review of the literature suggests that the potential for smaller scale, local tidal power generation from shallow near-shore sites has not yet been investigated. If such generation is feasible, it could have the potential to provide sustainable electricity for nearby coastal homes and communities as part of a distributed generation strategy, and would benefit from easier installation and maintenance, lower cabling and infrastructure requirements and reduced capital costs when compared with larger scale projects. This article reviews tidal barrages and lagoons, tidal turbines, oscillating hydrofoils and tidal kites to assess their suitability for small-scale electricity generation in shallow waters. This is achieved by discussing the power density, scalability, durability, maintainability, economic potential and environmental impacts of each concept. The performance of each technology in each criterion is scored against axial-flow turbines, allowing for them to be ranked according to their overall suitability. The review suggests that tidal kites and range devices are not suitable for small-scale shallow water applications due to depth and size requirements respectively. Cross-flow turbines appear to be the most suitable technology, as they have high power densities and a maximum size that is not constrained by water depth
Epigenetics as a mechanism driving polygenic clinical drug resistance
Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance
Hypergravity effects on glide arc plasma
The behaviour of a special type of electric discharge – the gliding arc plasma – has been investigated in hypergravity (1g –18g) using the Large Diameter Centrifuge (LDC) at ESA/ESTEC. The discharge voltage and current together with the videosignal from a fast camera have been recorded during the experiment. The gliding of the arc is governed by hot gas buoyancy and by consequence, gravity. Increasing the centrifugal acceleration makes the glide arc movement substantially faster. Whereas at 1g the discharge was stationary, at 6g it glided with 7 Hz frequency and at 18g the gliding frequency was 11 Hz. We describe a simple model for the glide arc movement assuming low gas flow velocities, which is compared to our experimental results
Stochastic modelling of tumorigenesis in p53 deficient mice.
Stochastic models of tumorigenesis have been developed to investigate the implications of experimental data on tumour induction in wild-type and p53-deficient mice for tumorigenesis mechanisms. Conventional multistage models in which inactivation of each p53 allele represents a distinct stage predict excessively large numbers of tumours in p53-deficient genotypes, allowing this category of model to be rejected. Multistage multipath models, in which a p53-mediated pathway co-exists with one or more p53-independent pathways, are consistent with the data, although these models require unknown pathways and do not enable age-specific curves of tumour appearance to be computed. An alternative model that fits the data is the 'multigate' model in which tumorigenesis results from a small number of gate-pass (enabling) events independently of p53 status. The role of p53 inactivation is as a rate modifier that accelerates the gate-pass events. This model implies that wild-type p53 acts as a 'caretaker' to maintain genetic uniformity in cell populations, and that p53 inactivation increases the probability of occurrence of a viable cellular mutant by a factor of about ten. The multigate model predicts a relationship between the time pattern of tumour occurrence and tumour genotype that should be experimentally testable. Stochastic modelling may help to distinguish 'gatekeeper' and 'caretaker' genes in other tumorigenic pathays
Immunocytochemical demonstration of p21 ras family oncogene product in normal mucosa and in premalignant and malignant tumours of the colorectum.
Study of the distribution of the p21 ras oncogene product as demonstrated by monoclonal antibody Y13-259 shows this protein to be apparently present in all epithelial populations of both premalignant and malignant tumours and throughout the normal foetal and adult epithelial crypt population in the colorectum. Metastatic tumour in liver shows a similar staining pattern which is less intense however than in the surrounding normal hepatocytes. Our results suggest that the presence of this protein is a widespread feature of normal cellular metabolism in certain cell types and is not restricted to those actively involved in cellular proliferation. It appears, furthermore, that neither cells at different stages of carcinogenesis nor those representing variants of a malignant phenotype can be identified using this particular antibody
STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage
STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. © 2013 Kim et al
The Transient Receptor Potential Ion Channel TRPV6 Is Expressed at Low Levels in Osteoblasts and Has Little Role in Osteoblast Calcium Uptake
Background: TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6-/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts.
Results: Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (P = 0.77) or TE-85 (P = 0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90±1.9 × 10−5 relative to B2M. In contrast, TRPV6 was detected at 7.7±3.0 × 10−2 and 2.38±0.28 × 10−4 the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80±0.24 × 10−5 relative to GAPDH, in contrast with 4.3±1.5 × 10−2 relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage.
Conclusions: TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake
Siddiqui, Negative refraction and focusing in hyperbolic transmission-line periodic grids
between an interface and the channel axes (cf. Ref. 3). This feature is counterintuitive to the conventional optical laws but it is totally consistent with the analysis based on the isofrequencies' for the channeled waves on anisotropic lattices discussed earlier. In the conventional isotropic periodic structures, a unit cell is representative of the respective finite arrangement when the edge cells are terminated into the matched loads. However, the feature of L-C mesh to funnel power from a point source into the narrow beam leads to the question whether load impedances of the edge cells nonadjacent to the beam axis affect the channel formation and properties of the propagating waves. To explore this effect, the load impedances outside the vicinities of the source and the channel output cells were varied. A comprehensive analysis of finite BM simulated in ADS has shown that only the first three edge nodes at the channel axis contribute to the beam formation. These observations led us to the conclusion that the channels arising on the anisotropic L-C mesh are well confined and guide waves along their axes as predicted by isofrequencies. To further elucidate the mechanism of wave channeling, the lattice portions were progressively removed to retain the mesh only around the channel axis. These alterations of the mesh arrangement incurred no visible changes of the beam shape and intensity on the truncated grids. Thus, the simulation results have proved that the propagation channel formed on the L-C mesh is truly confined to a few cells at the channel axis. This property of the L-C mesh suggests that a number of independent channels with their own impedances and axis orientations could be formed on the grid. Since the channel directions vary with frequency and the unit cell parameters, the L-C mesh can act as a spatial frequency discriminator CONCLUSIONS It has been shown that 2D periodic meshes composed of L-C circuits collimate waves from a point source into beams. The beam directions are prescribed by the lattice symmetry and the admittance ratio (Y 2 /Y 1 ) Ͻ 0. The basic properties of the channeled waves, determined by the isofrequencies, are invariant to the physical arrangements of the unit cells as long as the ratio (Y 2 /Y 1 ) remains constant. Effect of the unit cell structure on the channeled wave propagation has been explored for the unit cell configurations composed of double series (SSM), double parallel (PPM), and mixed parallel-series (PSM) L-C circuits. Analysis of these meshes has shown that the type (forward or backward) of channeled wave can be altered in the designed frequency band by varying only capacitance in the mesh arms. These findings are of particular significance for implementation of tunable meshes used in beam steering and phase compensation applications. Analysis of the channeled wave scattering at interfaces of dual L-C meshes showed that, in general, the "refracted" beams propagate only along the channel axes whose directions depend on the lattice parameters but not the angle of incidence onto interface. HIGH DIRECTIVITY IN LOW-PERMITTIVITY METAMATERIAL SLABS: RAY-OPTIC VS. LEAKY-WAVE MODEL
Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)
The basic known and hypothetic one- and two-element phases of the B-C-N-O
system (both superhard phases having diamond and boron structures and
precursors to synthesize them) are described. The attention has been given to
the structure, basic mechanical properties, and methods to identify and
characterize the materials. For some phases that have been recently described
in the literature the synthesis conditions at high pressures and temperatures
are indicated.Comment: Review on superhard B-C-N-O phase
- …
