352 research outputs found

    Softening of the stiffness of bottlebrush polymers by mutual interaction

    Full text link
    We study bottlebrush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side-chains with ca. 60 monomer units. The SLS- and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a worm-like chain with a contour length of 380 nm and a persistence length of 17.5 nm. An analysis of the DLS data confirm these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottlebrush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration 40.59 g/l under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.Comment: 4 pages, 4 figure

    Charge matters : mutations in Omicron variant favor binding to cells

    Get PDF
    Evidence is strengthening to suggest that the novel SARS-CoV-2 mutant Omicron, with its more than 60 mutations, will spread and dominate worldwide. Although the mutations in the spike protein are known, the molecular basis for why the additional mutations in the spike protein that have not previously occurred account for Omicron's higher infection potential, is not understood. We propose, based on chemical rational and molecular dynamics simulations, that the elevated occurrence of positively charged amino acids in certain domains of the spike protein (Delta: +4; Omicron: +5 vs. wild type) increases binding to cellular polyanionic receptors, such as heparan sulfate due to multivalent charge-charge interactions. This observation is a starting point for targeted drug development

    Quantifying the Reversible Association of Thermosensitive Nanoparticles

    Get PDF
    Under many conditions, biomolecules and nanoparticles associate by means of attractive bonds, due to hydrophobic attraction. Extracting the microscopic association or dissociation rates from experimental data is complicated by the dissociation events and by the sensitivity of the binding force to temperature (T). Here we introduce a theoretical model that combined with light-scattering experiments allows us to quantify these rates and the reversible binding energy as a function of T. We apply this method to the reversible aggregation of thermoresponsive polystyrene/poly(N-isopropylacrylamide) core-shell nanoparticles, as a model system for biomolecules. We find that the binding energy changes sharply with T, and relate this remarkable switchable behavior to the hydrophobic-hydrophilic transition of the thermosensitive nanoparticles

    Charge-induced conformational changes of dendrimers

    Full text link
    We study the effect of chargeable monomers on the conformation of dendrimers of low generation by computer simulations, employing bare Coulomb interactions. The presence of the latter leads to an increase in size of the dendrimer due to a combined effect of electrostatic repulsion and the presence of counterions within the dendrimer, and also enhances a shell-like structure for the monomers of different generations. In the resulting structures the bond-length between monomers, especially near the center, will increase to facilitate a more effective usage of space in the outer-regions of the dendrimer.Comment: 7 pages, 12 figure

    Soft Interaction Between Dissolved Dendrimers: Theory and Experiment

    Full text link
    Using small-angle neutron scattering and liquid integral equation theory, we relate the structure factor of flexible dendrimers of 4th generation to their average shape. The shape is measured as a radial density profile of monomers belonging to a single dendrimer. From that, we derive an effective interaction of Gaussian form between pairs of dendrimers and compute the structure factor using the hypernetted chain approximation. Excellent agreement with the corresponding experimental results is obtained, without the use of adjustable parameters. The present analysis thus strongly supports the previous finding that flexible dendrimers of low generation present fluctuating structures akin to star polymers.Comment: 20 pages, 4 figures, submitted to Macromolecules on July 24, 200

    Nonlinear response of dense colloidal suspensions under oscillatory shear: Mode-coupling theory and FT-rheology experiments

    Full text link
    Using a combination of theory, experiment and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the non linearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory (LAOS) experiments (with FT-rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disc mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in excellent agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves and large amplitude oscillatory spectroscopy

    Theory of Thermodynamic Stresses in Colloidal Dispersions at the Glass Transition

    Full text link
    We discuss the nonlinear rheology of dense colloidal dispersions at the glass transition. A first principles approach starting with interacting Brownian particles in given arbitrary homogeneous (incompressible) flow neglecting hydrodynamic interactions is sketched. It e.g. explains steady state flow curves for finite shear rates measured in dense suspensions of thermosensitive core-shell particles consisting of a polystyrene core and a crosslinked poly(N-isopropylacrylamide)(PNIPAM) shell. The exponents of simple and generalized Herschel Bulkley laws are computed for hard spheres.Comment: 3 pages, 1 figure; contribution to The XVth International Congress on Rheology, August 3-8, 2008, Monterey, California; submitted to J. Rheo

    Thermal Degradation of Adsorbed Bottle-Brush Macromolecules: Molecular Dynamics Simulation

    Full text link
    The scission kinetics of bottle-brush molecules in solution and on an adhesive substrate is modeled by means of Molecular Dynamics simulation with Langevin thermostat. Our macromolecules comprise a long flexible polymer backbone with LL segments, consisting of breakable bonds, along with two side chains of length NN, tethered to each segment of the backbone. In agreement with recent experiments and theoretical predictions, we find that bond cleavage is significantly enhanced on a strongly attractive substrate even though the chemical nature of the bonds remains thereby unchanged. We find that the mean bond life time decreases upon adsorption by more than an order of magnitude even for brush molecules with comparatively short side chains $N=1 \div 4$. The distribution of scission probability along the bonds of the backbone is found to be rather sensitive regarding the interplay between length and grafting density of side chains. The life time declines with growing contour length LL as L0.17\propto L^{-0.17}, and with side chain length as N0.53\propto N^{-0.53}. The probability distribution of fragment lengths at different times agrees well with experimental observations. The variation of the mean length L(t)L(t) of the fragments with elapsed time confirms the notion of the thermal degradation process as a first order reaction.Comment: 15 pages, 7 figure

    Polysulfates block SARS-CoV-2 uptake through electrostatic interactions

    Get PDF
    Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with a half-maximal inhibitory concentration (IC50) of 67 μg/mL (approx.1.6 μM). This synthetic polysulfates exhibit more than 60-fold higher virus inhibitory activity than heparin (IC50: 4084μg/mL), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind stronger to the spike protein than heparin, and that LPGS can interact even morewith the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interaction, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2
    corecore