281 research outputs found

    Zeta functions and Dynamical Systems

    Full text link
    In this brief note we present a very simple strategy to investigate dynamical determinants for uniformly hyperbolic systems. The construction builds on the recent introduction of suitable functional spaces which allow to transform simple heuristic arguments in rigorous ones. Although the results so obtained are not exactly optimal the straightforwardness of the argument makes it noticeable.Comment: 7 pages, no figuer

    Equilibrium states for non-uniformly expanding maps: decay of correlations and strong stability

    Full text link
    We study the rate of decay of correlations for equilibrium states associated to a robust class of non-uniformly expanding maps where no Markov assumption is required. We show that the Ruelle-Perron-Frobenius operator acting on the space of Holder continuous observables has a spectral gap and deduce the exponential decay of correlations and the central limit theorem. In particular, we obtain an alternative proof for the existence and uniqueness of the equilibrium states and we prove that the topological pressure varies continuously. Finally, we use the spectral properties of the transfer operators in space of differentiable observables to obtain strong stability results under deterministic and random perturbations.Comment: 29 pages, Annales de l'Institut Henri Poincare - Analyse non lineaire (to appear

    Linear response formula for piecewise expanding unimodal maps

    Full text link
    The average R(t) of a smooth function with respect to the SRB measure of a smooth one-parameter family f_t of piecewise expanding interval maps is not always Lipschitz. We prove that if f_t is tangent to the topological class of f_0, then R(t) is differentiable at zero, and the derivative coincides with the resummation previously proposed by the first named author of the (a priori divergent) series given by Ruelle's conjecture.Comment: We added Theorem 7.1 which shows that the horizontality condition is necessary. The paper "Smooth deformations..." containing Thm 2.8 is now available on the arxiv; see also Corrigendum arXiv:1205.5468 (to appear Nonlinearity 2012

    On the susceptibility function of piecewise expanding interval maps

    Full text link
    We study the susceptibility function Psi(z) associated to the perturbation f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a spectral description of transfer operators. It gives in particular sufficient conditions which guarantee that Psi(z) is holomorphic in a disc of larger than one. Although Psi(1) is the formal derivative of the SRB measure of f_t with respect to t, we present examples satisfying our conditions so that the SRB measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5. In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for these examples.Comment: To appear Comm. Math. Phy

    Dissipation time and decay of correlations

    Full text link
    We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and its associated propagators: spectral properties, local expansivity, and global mixing properties. We show that the dissipation is slow for a general class of non-weakly-mixing maps; on the opposite, it is fast for a large class of exponentially mixing systems which include uniformly expanding maps and Anosov diffeomorphisms.Comment: 26 Pages, LaTex. Submitted to Nonlinearit

    Convergence of invariant densities in the small-noise limit

    Full text link
    This paper presents a systematic numerical study of the effects of noise on the invariant probability densities of dynamical systems with varying degrees of hyperbolicity. It is found that the rate of convergence of invariant densities in the small-noise limit is frequently governed by power laws. In addition, a simple heuristic is proposed and found to correctly predict the power law exponent in exponentially mixing systems. In systems which are not exponentially mixing, the heuristic provides only an upper bound on the power law exponent. As this numerical study requires the computation of invariant densities across more than 2 decades of noise amplitudes, it also provides an opportunity to discuss and compare standard numerical methods for computing invariant probability densities.Comment: 27 pages, 19 figures, revised with minor correction

    Rare events, escape rates and quasistationarity: some exact formulae

    Full text link
    We present a common framework to study decay and exchanges rates in a wide class of dynamical systems. Several applications, ranging form the metric theory of continuons fractions and the Shannon capacity of contrained systems to the decay rate of metastable states, are given

    A quantization procedure based on completely positive maps and Markov operators

    Full text link
    We describe ω\omega-limit sets of completely positive (CP) maps over finite-dimensional spaces. In such sets and in its corresponding convex hulls, CP maps present isometric behavior and the states contained in it commute with each other. Motivated by these facts, we describe a quantization procedure based on CP maps which are induced by Markov (transfer) operators. Classical dynamics are described by an action over essentially bounded functions. A non-expansive linear map, which depends on a choice of a probability measure, is the centerpiece connecting phenomena over function and matrix spaces

    On the spectrum of Farey and Gauss maps

    Full text link
    In this paper we introduce Hilbert spaces of holomorphic functions given by generalized Borel and Laplace transforms which are left invariant by the transfer operators of the Farey map and its induced version, the Gauss map, respectively. By means of a suitable operator-valued power series we are able to study simultaneously the spectrum of both these operators along with the analytic properties of the associated dynamical zeta functions.Comment: 23 page

    Analyticity of the SRB measure of a lattice of coupled Anosov diffeomorphisms of the torus

    Full text link
    We consider the "thermodynamic limit"of a d-dimensional lattice of hyperbolic dynamical systems on the 2-torus, interacting via weak and nearest neighbor coupling. We prove that the SRB measure is analytic in the strength of the coupling. The proof is based on symbolic dynamics techniques that allow us to map the SRB measure into a Gibbs measure for a spin system on a (d+1)-dimensional lattice. This Gibbs measure can be studied by an extension (decimation) of the usual "cluster expansion" techniques.Comment: 28 pages, 2 figure
    corecore