583 research outputs found
Nonlinear dynamics of quantum dot nuclear spins
We report manifestly nonlinear dependence of quantum dot nuclear spin
polarization on applied magnetic fields. Resonant absorption and emission of
circularly polarized radiation pumps the resident quantum dot electron spin,
which in turn leads to nuclear spin polarization due to hyperfine interaction.
We observe that the resulting Overhauser field exhibits hysteresis as a
function of the external magnetic field. This hysteresis is a consequence of
the feedback of the Overhauser field on the nuclear spin cooling rate. A
semi-classical model describing the coupled nuclear and electron spin dynamics
successfully explains the observed hysteresis but leaves open questions for the
low field behaviour of the nuclear spin polarization.Comment: 7 pages, 4 figure
Dynamics of Quantum Dot Nuclear Spin Polarization Controlled by a Single Electron
We present an experimental study of the dynamics underlying the buildup and
decay of dynamical nuclear spin polarization in a single semiconductor quantum
dot. Our experiment shows that the nuclei can be polarized on a time scale of a
few milliseconds, while their decay dynamics depends drastically on external
parameters. We show that a single electron can very efficiently depolarize the
nuclear spins and discuss two processes that can cause this depolarization.
Conversely, in the absence of a quantum dot electron, the lifetime of nuclear
spin polarization is on the time scale of a second, most likely limited by the
non-secular terms of the nuclear dipole-dipole interaction. We can further
suppress this depolarization rate by 1-2 orders of magnitude by applying an
external magnetic field exceeding 1 mT.Comment: 5 pages, 3 figure
A circular dielectric grating for vertical extraction of single quantum dot emission
We demonstrate a nanostructure composed of partially etched annular trenches
in a suspended GaAs membrane, designed for efficient and moderately broadband
(approx. 5 nm) emission extraction from single InAs quantum dots. Simulations
indicate that a dipole embedded in the nanostructure center radiates upwards
into free space with a nearly Gaussian far-field, allowing a collection
efficiency > 80 % with a high numerical aperture (NA=0.7) optic, and with 12X
Purcell radiative rate enhancement. Fabricated devices exhibit an approx. 10 %
photon collection efficiency with a NA=0.42 objective, a 20X improvement over
quantum dots in unpatterned GaAs. A fourfold exciton lifetime reduction
indicates moderate Purcell enhancement.Comment: (3 pages
Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble
We present the experimental evidence of giant optical anisotropy in single
InAs quantum dots. Polarization-resolved photoluminescence spectroscopy reveals
a linear polarization ratio with huge fluctuations, from one quantum dot to
another, in sign and in magnitude with absolute values up to 82%. Systematic
measurements on hundreds of quantum dots coming from two different laboratories
demonstrate that the giant optical anisotropy is an intrinsic feature of dilute
quantum-dot arrays.Comment: submitted to Applied Physics Letter
Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler
We demonstrate a spectrally broadband and effcient technique for collecting
photoluminescence from a single InAs quantum dot directly into a standard
single mode optical fiber. In this approach, an optical fiber taper waveguide
is placed in contact with a suspended GaAs nanophotonic waveguide with embedded
quantum dots, forming an effcient and broadband directional coupler with
standard optical fiber input and output. Effcient photoluminescence collection
over a wavelength range of tens of nanometers is demonstrated, and a maximum
collection effciency of 6.05 % (corresponding single photon rate of 3.0 MHz)
into a single mode optical fiber was estimated for a single quantum dot
exciton
A nanometer-scale optical electrometer
Self-assembled semiconductor quantum dots show remarkable optical and spin
coherence properties, which have lead to a concerted research effort examining
their potential as a quantum bit for quantum information science1-6. Here, we
present an alternative application for such devices, exploiting recent
achievements of charge occupation control and the spectral tunability of the
optical emission of quantum dots by electric fields7 to demonstrate
high-sensitivity electric field measurement. In contrast to existing
nanometer-scale electric field sensors, such as single electron transistors8-11
and mechanical resonators12,13, our approach relies on homodyning light
resonantly Rayleigh scattered from a quantum dot transition with the excitation
laser and phase sensitive lock-in detection. This offers both static and
transient field detection ability with high bandwidth operation and near unity
quantum efficiency. Our theoretical estimation of the static field sensitivity
for typical parameters, 0.5 V/m/ \surd Hz, compares favorably to the
theoretical limit for single electron transistor-based electrometers. The
sensitivity level of 5 V/m/ \surd Hz we report in this work, which corresponds
to 6.4 * 10-6 e/ \surd Hz at a distance of 12 nm, is worse than this
theoretical estimate, yet higher than any other result attained at 4.2 K or
higher operation temperature
Direct Measurement of Quantum Dot Spin Dynamics using Time-Resolved Resonance Fluorescence
We temporally resolve the resonance fluorescence from an electron spin
confined to a single self-assembled quantum dot to measure directly the spin's
optical initialization and natural relaxation timescales. Our measurements
demonstrate that spin initialization occurs on the order of microseconds in the
Faraday configuration when a laser resonantly drives the quantum dot
transition. We show that the mechanism mediating the optically induced
spin-flip changes from electron-nuclei interaction to hole-mixing interaction
at 0.6 Tesla external magnetic field. Spin relaxation measurements result in
times on the order of milliseconds and suggest that a magnetic field
dependence, due to spin-orbit coupling, is sustained all the way down to 2.2
Tesla.Comment: An additional EPAPS file in PDF format is available for download at
the publications section of our website
http://www.amop.phy.cam.ac.uk/amop-ma
Polarization memory in single Quantum Dots
We measured the polarization memory of excitonic and biexcitonic optical
transitions from single quantum dots at either positive, negative or neutral
charge states. Positive, negative and no circular or linear polarization memory
was observed for various spectral lines, under the same quasi-resonant
excitation below the wetting layer band-gap. We developed a model which
explains both qualitatively and quantitatively the experimentally measured
polarization spectrum for all these optical transitions. We consider quite
generally the loss of spin orientation of the photogenerated electron-hole pair
during their relaxation towards the many-carrier ground states. Our analysis
unambiguously demonstrates that while electrons maintain their initial spin
polarization to a large degree, holes completely dephase.Comment: 6 pages, 4 figure
Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics
We present an inverted GaAs 2D electron gas with self-assembled InAs quantum
dots in close proximity, with the goal of combining quantum transport with
quantum optics experiments. We have grown and characterized several wafers --
using transport, AFM and optics -- finding narrow-linewidth optical dots and
high-mobility, single subband 2D gases. Despite being buried 500 nm below the
surface, the dots are clearly visible on AFM scans, allowing precise
localization and paving the way towards a hybrid quantum system integrating
optical dots with surface gate-defined nanostructures in the 2D gas.Comment: 4 pages, 5 figures (color
- …