82,599 research outputs found

    Origin of ferromagnetism in Cs2_2AgF4_4: importance of Ag - F covalency

    Full text link
    The magnetic nature of Cs2_{2}AgF4_{4}, an isoelectronic and isostructural analogue of La2_2CuO4_4, is analyzed using density functional calculations. The ground state is found to be ferromagnetic and nearly half metallic. We find strong hybridization of Ag-dd and F-pp states. Substantial moments reside on the F atoms, which is unusual for the halides and reflects the chemistry of the Ag(II) ions in this compound. This provides the mechanism for ferromagnetism, which we find to be itinerant in character, a result of a Stoner instability enhanced by Hund's coupling on the F

    Correlations and Event-by-Event Fluctuations in High Multiplicity Events Produced in 208^{208}Pb-208^{208}Pb Collisions

    Full text link
    Analysis of high multiplicity events produced in 158A GeV/c 208^{208}Pb-208^{208}Pb collisions is carried out to study the event-by-event fluctuations. The findings reveal that the method of scaled factorial moments can be used to identify the events having densely populated narrow phase space bins. A few events sorted out adopting this approach are individually analyzed. It is observed that these events do exhibit large fluctuations in their pseudorapidity, η\eta and azimuthal angle, ϕ\phi distributions arising out due to some dynamical reasons. Two particle Δη\Delta\eta-Δϕ\Delta\phi correlation study applied to these events too indicates that some complex two-dimensional structure of significantly high magnitude are present in these events which might have some dynamical origin. The findings reveal that the method of scaled factorial moments may be used as an effective triggering for events with large dynamical fluctuations.Comment: 20 pages, 7 figures (Accepted for publication in Advances in High Energy Physics

    Particle Production at CBM in a Thermal Model Approach

    Full text link
    The Compressed Baryonic Matter (CBM) experiment planned at Facility for Antiproton and Ion Research (FAIR) will provide a major scientific effort for exploring the properties of strongly interacting matter in the high baryon density regime. One of the important goal behind such experiment is to precisely determine the equation of state (EOS) for the strongly interacting matter at extreme baryon density. In this paper, we have used a thermal model EOS incorporating excluded volume description for the hot and dense hadron gas (HG). We then predict different particle ratios and the total multiplicity of various hadrons in the CBM energy range i.e. from 1010 A GeV to 4040 A GeV lab energies, which corresponds to 4.434.43 A GeV and 8.718.71 A GeV center-of-mass energies. Our main emphasis is to estimate the strange particles enhancement as well as increase in the net baryon density in CBM experiment. We have also compared our results with the results obtained from various other theoretical approaches existing in the literature such as hadron string dynamics (HSD) model and ultra-relativistic quantum molecular dynamics (UrQMD) etc.Comment: 16 pages, 8 figure

    Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

    Get PDF
    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally-resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest number of iterations that is essentially independent of the number of particles. For unbounded suspensions and suspensions sedimented against a single no-slip boundary, we rely on existing analytical expressions for the Rotne-Prager tensor combined with a fast multipole method or a direct summation on a Graphical Processing Unit to obtain an simple yet efficient and scalable implementation. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently-developed rigid-body immersed boundary method to suspensions of freely-moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid body equations converges in a bounded number of iterations regardless of the system size. We optimize a number of parameters in the iterative solvers and apply our method to a variety of benchmark problems to carefully assess the accuracy of the rigid multiblob approach as a function of the resolution. We also model the dynamics of colloidal particles studied in recent experiments, such as passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods sedimented against a wall.Comment: Under revision in CAMCOS, Nov 201

    Cytoadherence and virulence - the case of Plasmodium knowlesi malaria.

    Get PDF
    BACKGROUND: Cytoadherence of infected red blood cells to brain endothelium is causally implicated in malarial coma, one of the severe manifestations of falciparum malaria. Cytoadherence is mediated by specific binding of variant parasite antigens, expressed on the surface of infected erythrocytes, to endothelial receptors including, ICAM-1, VCAM and CD36. In fatal cases of severe falciparum malaria with coma, blood vessels in the brain are characteristically congested with infected erythrocytes. Brain sections from a fatal case of knowlesi malaria, but without coma, were similarly congested with infected erythrocytes. The objective of this study was to determine the binding phenotype of Plasmodium knowlesi infected human erythrocytes to recombinant human ICAM-1, VCAM and CD36. METHODS: Five patients with PCR-confirmed P. knowlesi malaria were recruited into the study with consent between April and August 2010. Pre-treatment venous blood was washed and cultured ex vivo to increase the proportion of schizont-infected erythrocytes. Cultured blood was seeded into Petri dishes with triplicate areas coated with ICAM-1, VCAM and CD36. Following incubation at 37°C for one hour the dishes were washed and the number of infected erythrocytes bound/mm2 to PBS control areas and to recombinant human ICAM-1 VCAM and CD36 coated areas were recorded. Each assay was performed in duplicate. Assay performance was monitored with the Plasmodium falciparum clone HB3. RESULTS: Blood samples were cultured ex vivo for up to 14.5 h (mean 11.3 ± 1.9 h) to increase the relative proportion of mature trophozoite and schizont-infected red blood cells to at least 50% (mean 65.8 ± 17.51%). Three (60%) isolates bound significantly to ICAM-1 and VCAM, one (20%) isolate bound to VCAM and none of the five bound significantly to CD36. CONCLUSIONS: Plasmodium knowlesi infected erythrocytes from human subjects bind in a specific but variable manner to the inducible endothelial receptors ICAM-1 and VCAM. Binding to the constitutively-expressed endothelial receptor CD36 was not detected. Further work will be required to define the pathological consequences of these interactions

    Multiflash whistlers in ELF-band observed at low latitude

    Get PDF
    Multiflash whistler-like event in the ELF-band, observed during March 1998 at low latitude station Jammu, is reported. The most prominent feature of these events is the multiflash nature along with the decrease in frequency within a very short span of time resembling similar to terrestrial whistlers. The events have a significantly smaller time duration (0.5–3.5 s) than those reported earlier from high, mid and low latitudes and also display a diurnal maximum occurring around 09:30 h (IST). There have been similar reportings from other latitudes, but whistlers in the ELF-band with a multiflash nature along with a precursor emission have never been reported. Lightning seems to be the dominant source for the ELF whistlers reported here

    Deep levels and radiation effects in p-InP

    Get PDF
    A survey was conducted on past studies of hole traps in InP. An experiment was designed to evaluate hole traps in Zn-doped InP after fabrication, after electron irradiation and after annealing using deep level transient spectroscopy. Data similar to that of Yamaguchi was seen with observation of both radiation-induced hole and electron traps at E sub A=0.45 eV and 0.03 eV, respectively. Both traps are altered by annealing. It is also shown that trap parameters for surface-barrier devices are influenced by many factors such as bias voltage, which probes traps at different depths below the surface. These devices require great care in data evaluation

    Revisiting the empirical existence of the Phillips Curve for India

    Get PDF
    This paper revisits the empirical existence of the Phillips curve in the Indian context. To estimate the Phillips curve we need two variables – inflation and the output gap. In the case of India, incorrect measurement of both variables causes much difficulty in estimating the Phillipscurve. We use a non-linear Kalman filter approach to estimate the output gap and find that the Kalman filter estimate captures all the dynamics of the economy. Our results show that after taking supply shocks into consideration, there is clear evidence as to the existence of the Phillips curve in India for recent years.Kalman Filter; Output Gap; Inflation
    • …
    corecore