18,162 research outputs found

    The design and fabrication of the Brayton Rotating Unit operating on Roller Element Bearings /BRU-R/ Final report

    Get PDF
    Design and fabrication of Brayton rotating unit operating on oil lubricated rolling element bearing

    Solid-state metathesis reactions under pressure: A rapid route to crystalline gallium nitride

    Get PDF
    High pressure chemistry has traditionally involved applying pressure and increasing temperature until conditions become thermodynamically favorable for phase transitions or reactions to occur. Here, high pressure alone is used as a starting point for carrying out rapid, self-propagating metathesis reactions. By initiating chemical reactions under pressure, crystalline phases, such as gallium nitride, can be synthesized which are inaccessible when initiated from ambient conditions. The single-phase gallium nitride made by metathesis reactions under pressure displays significant photoluminescence intensity in the blue/ultraviolet region. The absence of size or surface-state effects in the photoluminescence spectra show that the crystallites are of micron dimensions. The narrow lines of the x-ray diffraction patterns and scanning electron microscopy confirm this conclusion. Brightly luminescent thin films can be readily grown using pulsed laser deposition

    Electron Transport through a Molecular Conductor with Center-of-Mass Motion

    Full text link
    The linear conductance of a molecular conductor oscillating between two metallic leads is investigated numerically both for Hubbard interacting and noninteracting electrons. The molecule-leads tunneling barriers depend on the molecule displacement from its equilibrium position. The results present an interesting interference which leads to a conductance dip at the electron-hole symmetry point, that could be experimentally observable. It is shown that this dip is caused by the destructive interference between the purely electronic and phonon-assisted tunneling channels, which are found to carry opposite phases. When an internal vibrational mode is also active, the electron-hole symmetry is broken but a Fano-like interference is still observed

    Requirements for contractility in disordered cytoskeletal bundles

    Full text link
    Actomyosin contractility is essential for biological force generation, and is well understood in highly organized structures such as striated muscle. Additionally, actomyosin bundles devoid of this organization are known to contract both in vivo and in vitro, which cannot be described by standard muscle models. To narrow down the search for possible contraction mechanisms in these systems, we investigate their microscopic symmetries. We show that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. This suggests a role for filament buckling in the contraction of these bundles, consistent with recent experimental results on reconstituted actomyosin bundles.Comment: 10 pages, 6 figures; text shortene

    Practice transformations to optimize the delivery of HIV primary care in community healthcare settings in the United States: A program implementation study.

    Get PDF
    BackgroundThe United States HIV care workforce is shrinking, which could complicate service delivery to people living with HIV (PLWH). In this study, we examined the impact of practice transformations, defined as efficiencies in structures and delivery of care, on demonstration project sites within the Workforce Capacity Building Initiative, a Health Resources and Services Administration (HRSA) Ryan White HIV/AIDS Program Special Projects of National Significance (SPNS).Methods and findingsData were collected at 14 demonstration project sites in 7 states and the District of Columbia. Organizational assessments were completed at sites once before and 4 times after implementation. They captured 3 transformation approaches: maximizing the HIV care workforce (efforts to increase the number of existing healthcare workforce members involved in the care of PLWH), share-the-care (team-based care giving more responsibility to midlevel providers and staff), and enhancing client engagement in primary HIV care to reduce emergency and inpatient care (e.g., care coordination). We also obtained Ryan White HIV/AIDS Program Services Reports (RSRs) from sites for calendar years (CYs) 2014-2016, corresponding to before, during, and after transformation. The RSR include data on client retention in HIV care, prescription of antiretroviral therapy (ART), and viral suppression. We used generalized estimating equation (GEE) models to analyze changes among sites implementing each practice transformation approach. The demonstration projects had a mean of 18.5 prescribing providers (SD = 23.5). They reported data on more than 13,500 clients per year (mean = 969/site, SD = 1,351). Demographic characteristics remained similar over time. In 2014, a majority of clients were male (71% versus 28% female and 0.2% transgender), with a mean age of 47 (interquartile range [IQR] 37-54). Racial/ethnic characteristics (48% African American, 31% Hispanic/Latino, 14% white) and HIV risk varied (31% men who have sex with men; 31% heterosexual men and women; 7% injection drug use). A substantial minority was on Medicaid (41%). Across sites, there was significant uptake in practices consistent with maximizing the HIV care workforce (18% increase, p < 0.001), share-the-care (25% increase, p < 0.001), and facilitating patient engagement in HIV primary care (13% increase, p < 0.001). There were also significant improvements over time in retention in HIV care (adjusted odds ratio [aOR] = 1.03; 95% confidence interval [CI] 1.02-1.04; p < 0.001), ART prescription levels (aOR = 1.01; 95% CI 1.00-1.01; p < 0.001), and viral suppression (aOR = 1.03; 95% CI 1.02-1.04; p < 0.001). All outcomes improved at sites that implemented transformations to maximize the HIV care workforce or improve client engagement. At sites that implemented share-the-care practices, only retention in care and viral suppression outcomes improved. Study limitations included use of demonstration project sites funded by the Ryan White HIV/AIDS Program (RWHAP), which tend to have better HIV outcomes than other US clinics; varying practice transformation designs; lack of a true control condition; and a potential Hawthorne effect because site teams were aware of the evaluation.ConclusionsIn this study, we found that practice transformations are a potential strategy for addressing anticipated workforce challenges among those providing care to PLWH. They hold the promise of optimizing the use of personnel and ensuring the delivery of care to all in need while potentially enhancing HIV care continuum outcomes

    Quantum Field Theory of Forward Rates with Stochastic Volatility

    Full text link
    In a recent formulation of a quantum field theory of forward rates, the volatility of the forward rates was taken to be deterministic. The field theory of the forward rates is generalized to the case of stochastic volatility. Two cases are analyzed, firstly when volatility is taken to be a function of the forward rates, and secondly when volatility is taken to be an independent quantum field. Since volatiltiy is a positive valued quantum field, the full theory turns out to be an interacting nonlinear quantum field theory in two dimensions. The state space and Hamiltonian for the interacting theory are obtained, and shown to have a nontrivial structure due to the manifold moving with a constant velocity. The no arbitrage condition is reformulated in terms of the Hamiltonian of the system, and then exactly solved for the nonlinear interacting case.Comment: 7 Figure

    Kondo regime in triangular arrangements of quantum dots: Molecular orbitals, interference and contact effects

    Full text link
    Transport properties of an interacting triple quantum dot system coupled to three leads in a triangular geometry has been studied in the Kondo regime. Applying mean-field finite-U slave boson and embedded cluster approximations to the calculation of transport properties unveils a set of rich features associated to the high symmetry of this system. Results using both calculation techniques yield excellent overall agreement and provide additional insights into the physical behavior of this interesting geometry. In the case when just two current leads are connected to the three-dot system, interference effects between degenerate molecular orbitals are found to strongly affect the overall conductance. An S=1 Kondo effect is also shown to appear for the perfect equilateral triangle symmetry. The introduction of a third current lead results in an `amplitude leakage' phenomenon, akin to that appearing in beam splitters, which alters the interference effects and the overall conductance through the system.Comment: 14 pages, 9 figures, submitted to PR

    Redshift Evolution of the Nonlinear Two-Point Correlation Function

    Get PDF
    This paper presents a detailed theoretical study of the two-point correlation function ξ\xi for both dark matter halos and the matter density field in five cosmological models with varying matter density Ωm\Omega_m and neutrino fraction Ων\Omega_\nu. The objectives of this systematic study are to evaluate the nonlinear gravitational effects on ξ\xi, to contrast the behavior of ξ\xi for halos vs. matter, and to quantify the redshift evolution of ξ\xi and its dependence on cosmological parameters. Overall, ξ\xi for halos exhibits markedly slower evolution than ξ\xi for matter, and its redshift dependence is much more intricate than the single power-law parameterization used in the literature. Of particular interest is that the redshift evolution of the halo-halo correlation length r0r_0 depends strongly on Ωm\Omega_m and Ων\Omega_\nu, being slower in models with lower Ωm\Omega_m or higher Ων\Omega_\nu. Measurements of ξ\xi to higher redshifts can therefore be a potential discriminator of cosmological parameters. The evolution rate of r0r_0 for halos within a given model increases with time, passing the phase of fixed comoving clustering at z1z\sim 1 to 3 toward the regime of stable clustering at z0z\sim 0. The shape of the halo-halo ξ\xi, on the other hand, is well approximated by a power law with slope -1.8 in all models and is not a sensitive model discriminator.Comment: 22 pages, 8 postscript figures, AAS LaTeX v4.0. Accepted for publication in The Astrophysical Journal, Vol. 510 (January 1 1999

    The Mass Power Spectrum in Quintessence Cosmological Models

    Get PDF
    We present simple analytic approximations for the linear and fully evolved nonlinear mass power spectrum for spatially flat cold dark matter (CDM) cosmological models with quintessence (Q). Quintessence is a time evolving, spatially inhomogeneous energy component with negative pressure and an equation of state w_Q < 0. It clusters gravitationally on large length scales but remains smooth like the cosmological constant on small length scales. We show that the clustering scale is determined by the Compton wavelength of the Q-field and derive a shape parameter, \Gamma_Q, to characterize the linear mass power spectrum. The growth of linear perturbations as functions of redshift, w_Q, and matter density \Omega_m is also quantified. Calibrating to N-body simulations, we construct a simple extension of the formula by Ma (1998) that closely approximates the nonlinear power spectrum for a range of plausible QCDM models.Comment: 5 pages with 3 inserted postscript figures, AAS LaTeX v4.0 emulateapj.sty. Astrophysical Journal Letters, in pres
    corecore