13,790 research outputs found

    The effect of stellar-mass black holes on the structural evolution of massive star clusters

    Full text link
    We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant number of black holes are retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass segregated cluster.Comment: Accepted for publication in MNRAS Letters; 2 figures, 1 tabl

    Disentangling the Hercules stream

    Get PDF
    Using high-resolution spectra of nearby F and G dwarf stars, we have investigated the detailed abundance and age structure of the Hercules stream. We find that the stars in the stream have a wide range of stellar ages, metallicities, and element abundances. By comparing to existing samples of stars in the solar neighbourhood with kinematics typical of the Galactic thin and thick disks we find that the properties of the Hercules stream distinctly separate into the abundance and age trends of the two disks. Hence, we find it unlikely that the Hercules stream is a unique Galactic stellar population, but rather a mixture of thin and thick disk stars. This points toward a dynamical origin for the Hercules stream, probably caused by the Galactic bar.Comment: Accepted for publication in ApJ Letter

    General approach to potentials with two known levels

    Full text link
    We present the general form of potentials with two given energy levels E1E_{1}, E2E_{2} and find corresponding wave functions. These entities are expressed in terms of one function ξ(x)\xi (x) and one parameter ΔE=E2\Delta E=E_{2}-E1E_{1}. We show how the quantum numbers of both levels depend on properties of the function ξ(x)\xi (x). Our approach does not need resorting to the technique of supersymmetric (SUSY) quantum mechanics but automatically generates both the potential and superpotential.Comment: 14 pages, REVTeX 3.0. In v.2 misprints and inaccuracies in presentation corrected, discussion of 3-dim. case added. In v.3 misprint in eq. 41, several typos and inaccuracies in English corrected. To be published in J. of Phys. A: Math. Ge

    Magic Supergravities, N= 8 and Black Hole Composites

    Get PDF
    We present explicit U-duality invariants for the R, C, Q, O$ (real, complex, quaternionic and octonionic) magic supergravities in four and five dimensions using complex forms with a reality condition. From these invariants we derive an explicit entropy function and corresponding stabilization equations which we use to exhibit stationary multi-center 1/2 BPS solutions of these N=2 d=4 theories, starting with the octonionic one with E_{7(-25)} duality symmetry. We generalize to stationary 1/8 BPS multicenter solutions of N=8, d=4 supergravity, using the consistent truncation to the quaternionic magic N=2 supergravity. We present a general solution of non-BPS attractor equations of the STU truncation of magic models. We finish with a discussion of the BPS-non-BPS relations and attractors in N=2 versus N= 5, 6, 8.Comment: 33 pages, references added plus brief outline at end of introductio

    The Physical Basis for Long-lived Electronic Coherence in Photosynthetic Light Harvesting Systems

    Full text link
    The physical basis for observed long-lived electronic coherence in photosynthetic light-harvesting systems is identified using an analytically soluble model. Three physical features are found to be responsible for their long coherence lifetimes: i) the small energy gap between excitonic states, ii) the small ratio of the energy gap to the coupling between excitonic states, and iii) the fact that the molecular characteristics place the system in an effective low temperature regime, even at ambient conditions. Using this approach, we obtain decoherence times for a dimer model with FMO parameters of \approx 160 fs at 77 K and \approx 80 fs at 277 K. As such, significant oscillations are found to persist for 600 fs and 300 fs, respectively, in accord with the experiment and with previous computations. Similar good agreement is found for PC645 at room temperature, with oscillations persisting for 400 fs. The analytic expressions obtained provide direct insight into the parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011

    Catastrophic regime shifts in model ecological communities are true phase transitions

    Get PDF
    Ecosystems often undergo abrupt regime shifts in response to gradual external changes. These shifts are theoretically understood as a regime switch between alternative stable states of the ecosystem dynamical response to smooth changes in external conditions. Usual models introduce nonlinearities in the macroscopic dynamics of the ecosystem that lead to different stable attractors among which the shift takes place. Here we propose an alternative explanation of catastrophic regime shifts based on a recent model that pictures ecological communities as systems in continuous fluctuation, according to certain transition probabilities, between different micro-states in the phase space of viable communities. We introduce a spontaneous extinction rate that accounts for gradual changes in external conditions, and upon variations on this control parameter the system undergoes a regime shift with similar features to those previously reported. Under our microscopic viewpoint we recover the main results obtained in previous theoretical and empirical work (anomalous variance, hysteresis cycles, trophic cascades). The model predicts a gradual loss of species in trophic levels from bottom to top near the transition. But more importantly, the spectral analysis of the transition probability matrix allows us to rigorously establish that we are observing the fingerprints, in a finite size system, of a true phase transition driven by background extinctions.Comment: 19 pages, 11 figures, revised versio
    corecore