12,173 research outputs found

    Microscale application of column theory for high resolution force and displacement sensing

    Full text link
    We present the design, fabrication and experimental validation of a novel device that exploits the amplification of displacement and attenuation of structural stiffness in the post-buckling deformation of slender columns to obtain pico-Newton force and nanometer displacement resolution even under an optical microscope. The extremely small size, purely mechanical sensing scheme and vacuum compatibility of the instrument makes it compatible with existing visualization tools of nanotechnology. The instrument has a wide variety of potential applications ranging from electro-mechanical characterization of one dimensional solids to single biological cells

    A clarification of the Goodwin model of the growth cycle

    Get PDF
    We show that there is a difficulty in the original Goodwin model which isalso found in some more recent applications. In it both the labour share and theproportion employed can exceed unity, properties which are untenable. However, weshow that the underlying dynamic structure of the model can be reformulated toensure that these variables cannot exceed unity. An illustrative example extends theoriginal model, and we argue it is both plausible and satisfies the necessary unit boxrestrictions. We show that there is a difficulty in the original Goodwin model which isalso found in some more recent applications. In it both the labour share and theproportion employed can exceed unity, properties which are untenable. However, weshow that the underlying dynamic structure of the model can be reformulated toensure that these variables cannot exceed unity. An illustrative example extends theoriginal model, and we argue it is both plausible and satisfies the necessary unit boxrestrictions

    Impact of Six Sigma in a developing economy: analysis on benefits drawn by Indian industries

    Get PDF
    Overall operational excellence is the key requirement of any business to have global competence and sustained growth. Indian industries are not the exception to this. Six Sigma has emerged as one of the most effective business improvement strategies world wide. Nothing much has been published so far illustrating an overall experience of Indian industries with Six Sigma. This paper presents an analysis of the impact of Six Sigma on developing economy like India. The paper provides an insight into what kind of benefits Indian industries are gaining from Six Sigma as a whole. The study further highlights similarity and differences of benefit gained by different scales and sectors of Indian industries through Six Sigma. This exhaustive analysis of the benefits drawn by Indian industries through Six Sigma can assist other industries in India as well as those in other developing countries, who have yet not experimented with Six Sigma, to become more focused regarding their expectations from this improvement drivePeer Reviewe

    Homotopy Analysis Approach of Boussinesq Equation for Infiltration Phenomenon in Unsaturated Porous Medium.

    Get PDF
    oai:ojs.pkp.sfu.ca:article/11Boussinesq’s equation is one-dimensional nonlinear partial differential equation which represents the infiltration phenomenon. This equation is frequently used to study the infiltration phenomenon in unsaturated porous medium. Infiltration is the process in which the groundwater of the water reservoir has entered in the unsaturated soil through vertical permeable wall. An approximate analytical solution of nonlinear partial differential equation is presented by homotopy analysis method. The convergence of homotopy analysis solution is discussed by choosing proper value of convergence control parameter. The solution represents the height of free surface of infiltrated water

    An Approximate Analytical Solution of the Burger's Equation for Longitudinal Dispersion Phenomenon Arising in Fluid Flow through Porous Medium

    Get PDF
    The present paper discusses the longitudinal dispersion phenomenon in miscible fluid flow through porous medium. The mathematical formulation yields a nonlinear partial differential equation in the form of Burger's equation. An approximate analytical solution of the Burger's equation for longitudinal dispersion phenomenon has been obtained. Homotopy analysis method is adopted to solve this equation with suitable boundary conditions. The numerical interpretation of solution has been obtained at distancex for a given timet. The graphical interpretation of solution has been also given by Mathematica software

    Monojet searches for momentum-dependent dark matter interactions

    Get PDF
    We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb−1, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints. For a specific dark matter mass, the LHC turns out to be sensitive to smaller signal cross-sections in the momentum-dependent case, by virtue of the harder jet transverse-momentum distribution

    Loss Guided Activation for Action Recognition in Still Images

    Full text link
    One significant problem of deep-learning based human action recognition is that it can be easily misled by the presence of irrelevant objects or backgrounds. Existing methods commonly address this problem by employing bounding boxes on the target humans as part of the input, in both training and testing stages. This requirement of bounding boxes as part of the input is needed to enable the methods to ignore irrelevant contexts and extract only human features. However, we consider this solution is inefficient, since the bounding boxes might not be available. Hence, instead of using a person bounding box as an input, we introduce a human-mask loss to automatically guide the activations of the feature maps to the target human who is performing the action, and hence suppress the activations of misleading contexts. We propose a multi-task deep learning method that jointly predicts the human action class and human location heatmap. Extensive experiments demonstrate our approach is more robust compared to the baseline methods under the presence of irrelevant misleading contexts. Our method achieves 94.06\% and 40.65\% (in terms of mAP) on Stanford40 and MPII dataset respectively, which are 3.14\% and 12.6\% relative improvements over the best results reported in the literature, and thus set new state-of-the-art results. Additionally, unlike some existing methods, we eliminate the requirement of using a person bounding box as an input during testing.Comment: Accepted to appear in ACCV 201

    Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    Get PDF
    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. The CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations suggest that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer
    corecore