984 research outputs found
Aerodynamic noise from rigid trailing edges with finite porous extensions
This paper investigates the effects of finite flat porous extensions to
semi-infinite impermeable flat plates in an attempt to control trailing-edge
noise through bio-inspired adaptations. Specifically the problem of sound
generated by a gust convecting in uniform mean steady flow scattering off the
trailing edge and permeable-impermeable junction is considered. This setup
supposes that any realistic trailing-edge adaptation to a blade would be
sufficiently small so that the turbulent boundary layer encapsulates both the
porous edge and the permeable-impermeable junction, and therefore the
interaction of acoustics generated at these two discontinuous boundaries is
important. The acoustic problem is tackled analytically through use of the
Wiener-Hopf method. A two-dimensional matrix Wiener-Hopf problem arises due to
the two interaction points (the trailing edge and the permeable-impermeable
junction). This paper discusses a new iterative method for solving this matrix
Wiener-Hopf equation which extends to further two-dimensional problems in
particular those involving analytic terms that exponentially grow in the upper
or lower half planes. This method is an extension of the commonly used "pole
removal" technique and avoids the needs for full matrix factorisation.
Convergence of this iterative method to an exact solution is shown to be
particularly fast when terms neglected in the second step are formally smaller
than all other terms retained. The final acoustic solution highlights the
effects of the permeable-impermeable junction on the generated noise, in
particular how this junction affects the far-field noise generated by
high-frequency gusts by creating an interference to typical trailing-edge
scattering. This effect results in partially porous plates predicting a lower
noise reduction than fully porous plates when compared to fully impermeable
plates.Comment: LaTeX, 20 pp., 19 graphics in 6 figure
Recommended from our members
How to discriminate between computer-aided and computer-hindered decisions: a case study in mammography
Background. Computer aids can affect decisions in complex ways, potentially even making them worse; common assessment methods may miss these effects. We developed a method for estimating the quality of decisions, as well as how computer aids affect it, and applied it to computer-aided detection (CAD) of cancer, reanalyzing data from a published study where 50 professionals (“readers”) interpreted 180 mammograms, both with and without computer support.
Method. We used stepwise regression to estimate how CAD affected the probability of a reader making a correct screening decision on a patient with cancer (sensitivity), thereby taking into account the effects of the difficulty of the cancer (proportion of readers who missed it) and the reader’s discriminating ability (Youden’s determinant). Using regression estimates, we obtained thresholds for classifying a posteriori the cases (by difficulty) and the readers (by discriminating ability).
Results. Use of CAD was associated with a 0.016 increase in sensitivity (95% confidence interval [CI], 0.003–0.028) for the 44 least discriminating radiologists for 45 relatively easy, mostly CAD-detected cancers. However, for the 6 most discriminating radiologists, with CAD, sensitivity decreased by 0.145 (95% CI, 0.034–0.257) for the 15 relatively difficult cancers.
Conclusions. Our exploratory analysis method reveals unexpected effects. It indicates that, despite the original study detecting no significant average effect, CAD helped the less discriminating readers but hindered the more discriminating readers. Such differential effects, although subtle, may be clinically significant and important for improving both computer algorithms and protocols for their use. They should be assessed when evaluating CAD and similar warning systems
Recommended from our members
Effects of incorrect computer-aided detection (CAD) output on human decision-making in mammography
To investigate the effects of incorrect computer output on the reliability of the decisions of human users. This work followed an independent UK clinical trial that evaluated the impact of computer-aided detection(CAD) in breast screening. The aim was to use data from this trial to feed into probabilistic models (similar to those used in "reliability engineering") which would detect and assess possible ways of improving the human-CAD interaction. Some analyses required extra data; therefore, two supplementary studies were conducted. Study 1 was designed to elucidate the effects of computer failure on human performance. Study 2 was conducted to clarify unexpected findings from Study 1
Recommended from our members
Use of computer-aided detection (CAD) tools in screening mammography: a multidisciplinary investigation
We summarise a set of analyses and studies conducted to assess the effects of the use of a computer-aided detection (CAD) tool in breast screening. We have used an interdisciplinary approach that combines: (a) statistical analyses inspired by reliability modelling in engineering; (b) experimental studies of decisions of mammography experts using the tool, interpreted in the light of human factors psychology; and (c) ethnographic observations of the use of the tool both in trial conditions and in everyday screening practice. Our investigations have shown patterns of human behaviour and effects of computer-based advice that would not have been revealed by a standard clinical trial approach. For example, we found that the negligible measured effect of CAD could be explained by a range of effects on experts' decisions, beneficial in some cases and detrimental in others. There is some evidence of the latter effects being due to the experts using the computer tool differently from the intentions of the developers. We integrate insights from the different pieces of evidence and highlight their implications for the design, evaluation and deployment of this sort of computer tool
Recommended from our members
Terrorism, Dread Risk and Bicycle Accidents
Following the airplane attacks of September 11th, 2001 it is claimed that many Americans, dreading a repeat of these events, drove instead of flying, and that, consequently, there were extra car accidents, increasing the number of fatalities directly caused by the attacks by 1,500. After the Madrid train bombings of March 11th, 2004, Spaniards, like Americans, avoided the attacked mode of travel, but no increase in car travel or fatal accidents resulted. Here we analyze behavioral concomitants of the July 7th 2005 bomb attacks on public transport in London. We find reduced underground train travel and an increase in rates of bicycling and, over the 6 months following the attacks, 214 additional bicyclist road casualties - a 15.4% increase. Nevertheless we found no detectable increase in car accidents. We conclude that, while fear caused by terrorism may initiate potentially dangerous behaviors, understanding the secondary effects of terrorism requires consideration of the environmental variables that enable fear to manifest in dangerous behaviors
Microscopic expressions for the thermodynamic temperature
We show that arbitrary phase space vector fields can be used to generate
phase functions whose ensemble averages give the thermodynamic temperature. We
describe conditions for the validity of these functions in periodic boundary
systems and the Molecular Dynamics (MD) ensemble, and test them with a
short-ranged potential MD simulation.Comment: 21 pages, 2 figures, Revtex. Submitted to Phys. Rev.
Measuring Nonequilibrium Temperature of Forced Oscillators
The meaning of temperature in nonequilibrium thermodynamics is considered by
using a forced harmonic oscillator in a heat bath, where we have two effective
temperatures for the position and the momentum, respectively. We invent a
concrete model of a thermometer to testify the validity of these different
temperatures from the operational point of view. It is found that the measured
temperature depends on a specific form of interaction between the system and a
thermometer, which means the zeroth law of thermodynamics cannot be immediately
extended to nonequilibrium cases.Comment: 8 page
Molecular Dynamics Simulation of the ENTH Domain on Lipid Bilayer
This research study compares the effect of polypropylene and wool fibers on the mechanical properties of natural polymer based stabilized soils. Biocomposites are becoming increasingly prevalent and this growth is expected to continue within a number of sectors including building materials. The aim of this study was to investigate the influence of different fiber reinforced natural polymer stabilized soils with regards to mechanical properties and fiber adhesion characteristics. The polymer includes alginate, which is used in a wide range of applications but has not been commonly used within engineering and construction applications. In recent years, natural fibers have started to be used as an ecological friendly alternative for soil reinforcement within a variety of construction applications. Test results in this study have compared the effects of adding natural and synthetic fibers to clay soils and discussed the importance of an optimum soil specification. A correlation between the micro structural analysis using scanning electron microscope (SEM), fiber typology, fiber–matrix bonds and the mechanical properties of the stabilized soils is also discussed
- …
