984 research outputs found

    Aerodynamic noise from rigid trailing edges with finite porous extensions

    Full text link
    This paper investigates the effects of finite flat porous extensions to semi-infinite impermeable flat plates in an attempt to control trailing-edge noise through bio-inspired adaptations. Specifically the problem of sound generated by a gust convecting in uniform mean steady flow scattering off the trailing edge and permeable-impermeable junction is considered. This setup supposes that any realistic trailing-edge adaptation to a blade would be sufficiently small so that the turbulent boundary layer encapsulates both the porous edge and the permeable-impermeable junction, and therefore the interaction of acoustics generated at these two discontinuous boundaries is important. The acoustic problem is tackled analytically through use of the Wiener-Hopf method. A two-dimensional matrix Wiener-Hopf problem arises due to the two interaction points (the trailing edge and the permeable-impermeable junction). This paper discusses a new iterative method for solving this matrix Wiener-Hopf equation which extends to further two-dimensional problems in particular those involving analytic terms that exponentially grow in the upper or lower half planes. This method is an extension of the commonly used "pole removal" technique and avoids the needs for full matrix factorisation. Convergence of this iterative method to an exact solution is shown to be particularly fast when terms neglected in the second step are formally smaller than all other terms retained. The final acoustic solution highlights the effects of the permeable-impermeable junction on the generated noise, in particular how this junction affects the far-field noise generated by high-frequency gusts by creating an interference to typical trailing-edge scattering. This effect results in partially porous plates predicting a lower noise reduction than fully porous plates when compared to fully impermeable plates.Comment: LaTeX, 20 pp., 19 graphics in 6 figure

    Microscopic expressions for the thermodynamic temperature

    Full text link
    We show that arbitrary phase space vector fields can be used to generate phase functions whose ensemble averages give the thermodynamic temperature. We describe conditions for the validity of these functions in periodic boundary systems and the Molecular Dynamics (MD) ensemble, and test them with a short-ranged potential MD simulation.Comment: 21 pages, 2 figures, Revtex. Submitted to Phys. Rev.

    Measuring Nonequilibrium Temperature of Forced Oscillators

    Get PDF
    The meaning of temperature in nonequilibrium thermodynamics is considered by using a forced harmonic oscillator in a heat bath, where we have two effective temperatures for the position and the momentum, respectively. We invent a concrete model of a thermometer to testify the validity of these different temperatures from the operational point of view. It is found that the measured temperature depends on a specific form of interaction between the system and a thermometer, which means the zeroth law of thermodynamics cannot be immediately extended to nonequilibrium cases.Comment: 8 page

    Molecular Dynamics Simulation of the ENTH Domain on Lipid Bilayer

    Get PDF
    This research study compares the effect of polypropylene and wool fibers on the mechanical properties of natural polymer based stabilized soils. Biocomposites are becoming increasingly prevalent and this growth is expected to continue within a number of sectors including building materials. The aim of this study was to investigate the influence of different fiber reinforced natural polymer stabilized soils with regards to mechanical properties and fiber adhesion characteristics. The polymer includes alginate, which is used in a wide range of applications but has not been commonly used within engineering and construction applications. In recent years, natural fibers have started to be used as an ecological friendly alternative for soil reinforcement within a variety of construction applications. Test results in this study have compared the effects of adding natural and synthetic fibers to clay soils and discussed the importance of an optimum soil specification. A correlation between the micro structural analysis using scanning electron microscope (SEM), fiber typology, fiber–matrix bonds and the mechanical properties of the stabilized soils is also discussed
    corecore