24 research outputs found

    Heterogeneous Nutrient Distribution Across Dairy Grazing Systems in Southeastern Australia

    Get PDF
    The Australian dairy industry is largely based on a grazed pasture system, although most cows also consume substantial amounts of imported feed (Fulkerson & Doyle 2001). This trend is expected to increase as the Australian dairy industry continues to intensify. Fertiliser inputs of nitrogen (N), phosphorus (P), potassium (K) and sulphur (S) are still viewed as necessary to maintain adequate pasture and milk production despite the fact that most dairy farms are in net positive balance for all of these nutrients (Reuter 2001). Nutrient losses from dairy farming regions and eutrophication of waterways has gained strong public and political attention and intensive pasture systems are no longer seen as ‘clean and green’. An important aspect of a viable dairy industry in the future will be more refined nutrient management planning

    Fertiliser Responses and Soil Test Calibrations for Grazed Pastures in Australia

    Get PDF
    On-farm management of fertiliser is of major economic significance to the Australian grazing industries, based on expenditure on fertiliser and higher farm productivity that fertiliser use supports. However the application of fertiliser has traditionally been an inexact and inefficient process (Peverill et al. 1999) and there is increasing pressure for nutrient losses from agriculture to be minimised. The improved adoption and application of tools like soil testing can make substantial improvements in nutrient use efficiency but interpretation needs to be based on the best available information. This paper reports on the collation of current and historical experimental data relating to pasture production - fertiliser response relationships (nitrogen, phosphorus, potassium and sulphur) for various pasture types, climatic zones and soils across Australia

    UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques

    Get PDF
    Miscanthus holds a great potential in the frame of the bioeconomy, and yield prediction can help improve Miscanthus’ logistic supply chain. Breeding programs in several countries are attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration procedure was performed using simulated data from the PROSAIL model to link vegetation indices (VIs) derived from two different multispectral sensors. The random forest algorithm estimated with good accuracy yield traits (light interception, plant height, green leaf biomass, and standing biomass) using a VIs time series, and predicted yield using a peak descriptor derived from a VIs time series with 2.3 Mg DM ha−1 of the root mean square error (RMSE). The study demonstrates the potential of UAVs’ multispectral images in HTP applications and in yield prediction, providing important information needed to increase sustainable biomass production

    UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques

    Get PDF
    Miscanthus holds a great potential in the frame of the bioeconomy, and yield prediction can help improve Miscanthus’ logistic supply chain. Breeding programs in several countries are attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration procedure was performed using simulated data from the PROSAIL model to link vegetation indices (VIs) derived from two different multispectral sensors. The random forest algorithm estimated with good accuracy yield traits (light interception, plant height, green leaf biomass, and standing biomass) using a VIs time series, and predicted yield using a peak descriptor derived from a VIs time series with 2.3 Mg DM ha−1 of the root mean square error (RMSE). The study demonstrates the potential of UAVs’ multispectral images in HTP applications and in yield prediction, providing important information needed to increase sustainable biomass production

    UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques

    Get PDF
    Miscanthus holds a great potential in the frame of the bioeconomy, and yield prediction can help improve Miscanthus’ logistic supply chain. Breeding programs in several countries are attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration procedure was performed using simulated data from the PROSAIL model to link vegetation indices (VIs) derived from two different multispectral sensors. The random forest algorithm estimated with good accuracy yield traits (light interception, plant height, green leaf biomass, and standing biomass) using a VIs time series, and predicted yield using a peak descriptor derived from a VIs time series with 2.3 Mg DM ha−1 of the root mean square error (RMSE). The study demonstrates the potential of UAVs’ multispectral images in HTP applications and in yield prediction, providing important information needed to increase sustainable biomass production

    Spring emergence and canopy development strategies in miscanthus hybrids in Mediterranean, continental and maritime European climates

    Get PDF
    Due to its versatility and storability, biomass is an important resource for renewable materials and energy. Miscanthus hybrids combine high yield potential, low input demand, tolerance of certain marginal land types and several ecosystem benefits. To date, miscanthus breeding has focussed on increasing yield potential by maximising radiation interception through: 1) selection for early emergence, 2) increasing the growth rate to reach canopy closure as fast as possible, and 3) delayed flowering and senescence. The objective of this study is to compare early season re-growth in miscanthus hybrids cultivated across Europe. Determination of differences in early canopy development on end-of-year yield traits is required to provide information for breeding decisions to improve future crop performance. For this purpose, a trial was planted with four miscanthus hybrids (two novel seed-based hybrids M. sinensis×sinensis (M sin×sin) and M. sacchariflorus×sinensis (M sac×sin), a novel rhizome-based M sac×sin and a standard Miscanthus×giganteus (M×g) clone) in the UK, Germany, Croatia and Italy, and was monitored in the third and fourth growing season. We determined differences between the hybrids in base temperature, frost sensitivity and emergence strategy. M×g and M sac×sin mainly emerged from belowground plant organs, producing fewer but thicker shoots at the beginning of the growing season, but these shoots were susceptible to air frosts (determined by recording 0°C 2 m above ground surface). By contrast, M sin×sin emerged 10 days earlier, avoiding damage by late spring frosts and producing a high number of thinner shoots from aboveground shoots. Therefore, we recommend cultivating M sac×sin at locations with low risk and M sin×sin at locations with higher risk of late spring frosts. Selecting miscanthus hybrids that produce shoots throughout the vegetation period is an effective strategy to limit the risk of late frost damage and avoid reduction in yield from a shortened growing season

    Site impacts nutrient translocation efficiency in intraspecies and interspecies miscanthus hybrids on marginal lands

    Get PDF
    Miscanthus, a C4 perennial rhizomatous grass, is capable of growing in varied climates and soil types in Europe, including on marginal lands. It can produce high yields with low nutrient inputs when harvested after complete senescence. Senescence induction and rate depend on complex genetic, environmental, and management interactions. To explore these interactions, we analysed four miscanthus hybrids (two novel seed-based hybrids, GRC 3 [Miscanthus sinensis × sinensis] and GRC 14 [M. sacchariflorus × sinensis]; GRC 15, a novel M. sacchariflorus × sinensis clone; and GRC 9, a standard Miscanthus × giganteus clone) in Italy, Croatia, Germany and the UK. Over all trial locations and hybrids, the average aboveground biomass of the 3-year-old stands in August 2020 was 15 t DM ha−1 with nutrient contents of 7.6 mg N g−1 and 14.6 mg K g−1. As expected, delaying the harvest until spring reduced overall yield and nutrient contents (12 t DM ha−1, 3.3 mg N g−1, and 5.5 mg K g−1). At lower latitudes, the late-ripening M. sacchariflorus × sinensis GRC 14 and GRC 15 combined high yields with low nutrient contents. At the most elevated latitude location (UK), the early-ripening M. sinensis × sinensis combined high biomass yields with low nutrient offtakes. The clonal Miscanthus × giganteus with intermediate flowering and senescence attained similar low nutrient contents by spring harvest at all four locations. Seasonal changes in yield and nutrient levels analysed in this study provide: (1) a first step towards recommending hybrids for specific locations and end uses in Europe; (2) crucial data for determination of harvest time and practical steps in the valorization of biomass; and (3) key sustainability data for life cycle assessments. Identification of trade-offs resulting from genetic × environment × management interactions is critical for increasing sustainable biomass supply from miscanthus grown on marginal lands

    Investigating the potential of novel nonwoven fabrics for efficient pollination control in plant breeding

    Get PDF
    Plant breeding is achieved through the controlled self- or cross-pollination of individuals and typically involves isolation of floral parts from selected parental plants. Paper, cellulose or synthetic materials are used to avoid self pollination or cross contamination. Low seed set limits the rate of breeding progress and increases costs. We hypothesized that a novel ‘nonwoven’ fabric optimal for both pollination and seed set in multiple plant species could be developed. After determining the baseline pollen characteristics and usage requirements we established iterative three phase development and biological testing. This determined (1) that white fabric gave superior seed return and informed the (2) development of three non-woven materials using different fibre and layering techniques. We tested their performance in selfing and hybridisation experiments recording differences in performance by material type within species. Finally we (3) developed further advanced fabrics with increased air permeability and tested biological performance. An interaction between material type and species was observed and environmental decoupling investigated, showing that the non-woven fabrics had superior water vapour transmission and temperature regulation compared to controls. Overall, non-woven fabrics outperformed existing materials for both pollination and seed set and we found that different materials can optimize species-specific, rather than species-generic performance

    Yield performance of fourteen novel inter- and intra-species Miscanthus hybrids across Europe

    Get PDF
    Miscanthus, a C4 perennial rhizomatous grass from Asia is a leading candidate for the supply of sustainable biomass needed to grow the bioeconomy. European Miscanthus breeding programmes have recently produced a new range of seeded hybrids with the objective of increasing scalability to large acreages limited by current clonal propagation. For the EU-GRACE project new replicated field trials were established in seven locations across Europe in 2018 with eight intraspecific M. sinensis hybrids (sin×sin) and six M. sacchariflorus × M. sinensis (sac×sin) from Dutch and UK breeding programmes respectively with clonal Miscanthus × giganteus. The planting density of the sin×sin was double that of sac×sin (30,000 & 15,000 plants ha-1), creating commercially relevant upscaling comparisons between systems. Over the first three years, the establishment depended on location and hybrid. The mature sin×sin hybrids formed tight tufts of shoots up to 2.5 m tall which flower and senesce earlier than the taller sac×sin hybrids. Following the third growing season, the highest yields were recorded in Northern Italy at a low altitude (average 13.7 (max 21) Mg DM ha-1) and the lowest yielding was on the industrially damaged marginal land site in Northern France (average 7.0 (max 10) Mg DM ha-1). Moisture contents at spring harvest were lowest in Croatia (21.7%) and highest in Wales, UK (41.6%). Overall, lower moisture contents at harvest, which are highly desirable for transport, storage and for most end-use applications, were found in sin×sin hybrids than sac×sin (30 and 40% respectively). Yield depended on climate interactions with the hybrid and their associated planting systems. The sin×sin hybrids appeared better adapted to northern Europe and sac×sin hybrids to southern Europe. Longer-term yield observations over crop lifespans will be needed to explore the biological (yield persistence) and economic costs and benefits of the different hybrid systems

    Novel Miscanthus hybrids: Modelling productivity on marginal land in Europe using dynamics of canopy development determined by light interception

    Get PDF
    New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety
    corecore