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Abstract
Due to its versatility and storability, biomass is an important resource for renew-
able materials and energy. Miscanthus hybrids combine high yield potential, low 
input demand, tolerance of certain marginal land types and several ecosystem 
benefits. To date, miscanthus breeding has focussed on increasing yield poten-
tial by maximising radiation interception through: (1) selection for early emer-
gence, (2) increasing the growth rate to reach canopy closure as fast as possible, 
and (3) delayed flowering and senescence. The objective of this study is to com-
pare early season re-growth in miscanthus hybrids cultivated across Europe. 
Determination of differences in early canopy development on end-of-year yield 
traits is required to provide information for breeding decisions to improve future 
crop performance. For this purpose, a trial was planted with four miscanthus 
hybrids (two novel seed-based hybrids M. sinensis × sinensis [M sin × sin] and M. 
sacchariflorus × sinensis [M sac × sin], a novel rhizome-based M sac × sin and a 
standard Miscanthus  ×  giganteus [M  ×  g] clone) in the UK, Germany, Croatia 
and Italy, and was monitored in the third and fourth growing season. We deter-
mined differences between the hybrids in base temperature, frost sensitivity and 
emergence strategy. M × g and M sac × sin mainly emerged from belowground 
plant organs, producing fewer but thicker shoots at the beginning of the growing 
season but these shoots were susceptible to air frosts (determined by recording 
0°C 2 m above ground surface). By contrast, M sin × sin emerged 10 days earlier, 
avoiding damage by late spring frosts and producing a high number of thin-
ner shoots from aboveground shoots. Therefore, we recommend cultivating M 
sac × sin at locations with low risk and M sin × sin at locations with higher risk of 
late spring frosts. Selecting miscanthus hybrids that produce shoots throughout 
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1   |   INTRODUCTION

In order to counteract anthropogenic global warming, 
the European Union increased the share of renewables 
in its energy mix from 9.6% in 2004 to 22.1% in 2020 
(Eurostat, 2022). Biomass is one of many diverse resources 
available to meet global energy demands. Its main advan-
tages are its storability and versatility (fuel, heat, and elec-
tricity), making it one of the most important renewable 
energies. Biomass already accounts for 60% of the EU's 
renewable energy supplies (European Union, 2019) and is 
additionally used as a feedstock for material applications. 
However, increasing demands and limited land availabil-
ity make it necessary to use available land productively 
and simultaneously reduce the negative environmental 
impacts of the agricultural ecosystem. High-yielding bio-
mass plants can play an important role here. Miscanthus, 
a perennial C4 grass, is a promising biomass crop due to 
its high yield potential, low input demand (McCalmont 
et al., 2017) and diverse environmental benefits (Ferrarini 
et al.,  2017; Lask et al.,  2020; McCalmont et al.,  2017). 
Although the initial investment is relatively high, once es-
tablished, miscanthus offers simplified crop management 
with no need for soil cultivation and minimal fertiliser 
and herbicide requirements in the establishment phase 
due to rapid canopy closure (Clifton-Brown et al., 2007). 
Miscanthus can grow on contaminated (Nebeská 
et al., 2021; Rusinowski et al., 2019; Wang et al., 2021) and 
low-productivity soils (Awty-Carroll et al., 2022; Kalinina 
et al., 2017). When cultivated as a biomass crop on mar-
ginal land, it offers economic and environmental benefits 
and, at the same time, minimises conflicts with other land-
use (Shepherd et al., 2023) options. Its suitability for culti-
vation as a commercial biomass crop in Europe has been 
investigated in several studies (Awty-Carroll et al., 2022; 
Kalinina et al., 2017; Lewandowski et al., 2000). This, and 
the development of global productivity models for mis-
canthus (Shepherd et al.,  2020, 2023), have highlighted 
its potential and driven breeding programmes. A further 
understanding of genotype-by-environment (G × E) in-
teractions and the exploitation of natural genetic varia-
tion will become increasingly important in maximising 
productivity. One major determinant of the yield of mis-
canthus is the length of time between canopy closure and 

aboveground dieback (Clifton-Brown et al., 2019; Robson, 
Farrar, et al., 2013). Until now, breeding programmes have 
focused on maximising the length of time of radiation 
interception through manipulating the growth start date 
(emergence, defined as the time of the first visible abo-
veground shoot), increasing the growth rate in the early 
vegetation period to reach canopy closure as fast as possi-
ble, and extending the vegetation period by delayed senes-
cence (Robson, Farrar, et al., 2013). This breeding strategy 
aims to maximise the active growth period (period in 
which crop biomass increases) within the vegetation pe-
riod. The active growth period is defined by miscanthus 
biomass models as either: (1) the period between the 
last day of frost in spring and the first frost event in au-
tumn (Clifton-Brown et al.,  2000; Hastings et al.,  2009), 
or (2) days with an average daily temperature above 10°C 
(Kobayashi & Yokoi,  2017; Kotrla & Prcik,  2013, 2020). 
However, early emergence is only an effective strategy if 
the new shoots are not killed by late spring frosts (frost 
occurring at the beginning of the vegetation period). Frost 
and freezing damage plant tissue irreversibly through os-
motic shock, dehydration stress and/or the formation of 
ice crystals. Damage by late frost events is mainly caused 
by a radiation freeze, which occurs during calm, clear 
nights with a dry atmosphere (Hocevar & Martsolf, 1971; 
Leuning, 1988; Mukhopadhyay & Roychoudhury, 2018; 
Nobel, 2020). Conversely, freezing injuries occur during 
an advective freeze, where horizontal air movement at 
temperatures below freezing causes the formation of ice 
crystals in plant tissues (Mukhopadhyay & Roychoudhury, 
2018). In this study, frost and freeze damage is referred to 
collectively as “frost damage”.

The vegetation period in Europe is currently extending 
as climate warming decreases the total number of days 
with temperatures below freezing (Menzel & Fabian, 1999; 
Myneni et al.,  1997). However, these higher tempera-
tures are also stimulating an earlier start to the growing 
season that in turn increases the risk of frost damage at 
the beginning of the growing season (Kreyling, 2013; Liu 
et al., 2018). In Europe, the number of frost days in the 
vegetation period increased significantly from 1982 to 
2012, primarily in spring (Liu et al.,  2018). For this rea-
son, a better understanding of the early development of 
miscanthus hybrids, their vulnerability to late frost events 

Funding information
Bio-Based Industries Joint Undertaking, 
Grant/Award Number: 745012

the vegetation period is an effective strategy to limit the risk of late frost damage 
and avoid reduction in yield from a shortened growing season.
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base temperature, late spring frost, miscanthus, number of shoots, perennial rhizomatous 
grass, shoot sprouting, thermal time
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      |  3MAGENAU et al.

and the different strategies of the plants to overcome frost 
damage is crucial for the breeding of site-adapted hybrids 
and choice of site-specific hybrids. 

The objective of this research is to assess the early plant 
growth of a set of four different miscanthus hybrids culti-
vated at multiple locations in Europe by identifying differ-
ences in leaf development in early spring and their effects 
on end-of-year yield parameters. The identification of strat-
egies used to cope with frost damage can provide import-
ant information for the selection of the miscanthus hybrid 
best suited for each location and support selection for fur-
ther breeding. The hybrids assessed were: (1) a standard 
rhizome-based clone of Miscanthus  ×  giganteus (M  ×  g); 
(2) a novel seed-based M. sinensis × sinensis (M sin × sin) hy-
brid; (3) a novel seed-based M. sacchariflorus × sinensis (M 
sac × sin) hybrid; and (4) a novel rhizome-based M. sacchari-
florus × sinensis (M sac × sin) clone. They were cultivated in a 
multi-location trial at sites in the UK, Germany, Croatia and 
Italy. This study assesses the genetic and environmental fac-
tors determining the emergence of the miscanthus hybrids. 
It also analyses the effect of late spring frosts on the newly 
emerging shoots and the end-of-year yield parameters.

2   |   MATERIALS AND METHODS

The field trials on which this study is based are part of 
the BBI JU demonstration project GRACE (www.grace​
-bbi.eu) and are described in detail by Awty-Carroll 
et al. (2022).

The four trial sites are located:

•	 at Trawsgoed (TWS; 52°20′12.48, 3°56′52.1556, 72 m 
a.s.l.) near Aberystwyth in Wales, United Kingdom.

•	 at Oberer Lindenhof (OLI; 48°28′45.42, 9°18′42.67, 
706 m a.s.l.) on the Swabian Alb near Stuttgart, Germany.

•	 near Zagreb (ZAG; 45°85′05.55, 16°17′77.76, 119 m 
a.s.l.), Croatia, and

•	 near Piacenza (PAC; 45°00′30.33, 9°70′98.49, 70 m 
a.s.l.), Italy.

They were planted in 2018 by hand in a randomised 
complete block design with four replicates and 14 hy-
brids. Each plot was 9 m × 9.68 m with a row distance of 
0.75 m. From the first year after planting, the biomass in 
the measurement area at each site was harvested annually 
in spring (date depended on local weather conditions) by 
hand at a cutting height of 10 cm. The remaining border 
area was machine-harvested at the same time. Details of 
the four miscanthus hybrids investigated in this study and 
the different planting densities are given in Table 1.

Weather data, including hourly average, minimum and 
maximum temperatures, were recorded at each site by a 
WS-GP1 Compact Weather Station (Delta-T Devices Ltd) 
connected to the Delta-T cloud server. In addition, tem-
perature loggers recorded soil temperature (Thermochron 
iButton, iButtonLink Technology) at a depth of 5  cm 
during the 2018/2019 winter at all sites and the 2019/2020 
winter at OLI. Long-term average daily temperature and 
total monthly precipitation from 2009 to 2019 were ob-
tained from the nearest weather station (TWS: adjacent to 
the TWS site; OLI: located on the field station; ZAG: at 
Zagreb-Pleso approximately 15 km from the field station; 
PAC: located on the field station).

2.1  |  Field measurements

In spring 2020 and 2021, measurements of crop height, 
frost damage, and light interception were taken on a 
weekly basis at each site from five designated plants 
within the measurement area of each plot (see Awty-
Carroll et al., 2022). The crop height was measured from 
the same side of the plant from the soil surface to the tip of 
the tallest shoot (Figure 1). Where frost had caused tissue 
damage, shoot height was measured up to the visible green 
tip. The extent of frost damage was assessed in the week 
following a frost, quantified using a 0–9 score. A score of 
0 was given to plants with no visible frost damage. Plants 
with a score of 1 had mild scorching to the tips of leaves, 
and up to four had shrivelled or pulpous leaf tips. Plants 

T A B L E  1   Description of miscanthus hybrids used in the multi-location trials.

Hybrid Species
Propagation 
method Origin

Planting 
density

GRC 3 Miscanthus sinensis × sinensis (M sin × sin) Seed-based hybrids Wageningen University 
breeding programme

3 plants m−2

GRC 9 M. × giganteus (M × g) Rhizome-based clone Terravesta 1.5 plants m−2

GRC 14 M. sacchariflorus × sinensis (M sac × sin) Seed-based hybrids Aberystwyth University 
breeding programme

1.5 plants m−2

GRC 15 M. sacchariflorus × sinensis (M sac × sin) Rhizome-based clone Terravesta 1.5 plants m−2

 17571707, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcbb.13035 by T

est, W
iley O

nline L
ibrary on [27/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.grace-bbi.eu
http://www.grace-bbi.eu


4  |      MAGENAU et al.

with a score of 9 were severely damaged, with all above-
ground shoots (leaves and stems) killed by the frost. In 
this case, regrowth is only possible from the belowground 

rhizome meristems. At the end of each growing season, 
the number of shoots taller than 60% of the plant's height 
were counted.

The date of canopy closure (defined as 85% light inter-
ception) was determined by regular measurements of the 
light interception using a LightIntercepta (Awty-Carroll, 
2020) in manner similar to that described in Robson, 
Farrar, et al. (2013). The LightIntercepta was assembled as 
suggested by Salter et al. (2019). It measures the relative 
light over 1 m using six pairs of photodiodes. The photo-
diodes are covered by 3 mm opal acrylic sheet to diffuse 
the light and provide a water-free internal environment 
(Salter et al.,  2019). The light intercepted by the canopy 
was measured by positioning the LightIntercepta horizon-
tally at an angle of 45° to the plant row (Figure 2) through 
the middle of a plant at a height of 10 cm above soil level. 
An additional reference measurement was taken with no 
light interception, either above the crop or outside the plot 
if the crop was too high. In total, five measurements per 
plot were taken.

2.2  |  Data analysis

This study defines emergence as the time when visible 
aboveground shoots can be detected. The day of emer-
gence was identified by a back-correlation from up to four 
steadily increasing shoot height measurements (Nunn 
et al., 2017). Due to frost damage however, a reverse cor-
relation was not always possible. In such cases, the mean 
value between the measurements immediately before and 
after emergence was taken as the emergence day. In the 
rare cases where no measurement was taken before bud-
break, the day of the first height measurement was taken 
as emergence day. In this study, the growth period is de-
fined as the time between emergence and canopy closure. 
We categorised the frost events occurring at the beginning 
of the growing season into light, medium, severe, and ex-
treme frosts based on air temperatures measured at 2 m 
above soil level by the WS-GP1 weather station (Table 2) 
according to Farrell et al. (2006).

A number of approaches were applied to calculate the 
soil temperature from the air temperature. Each approach 

F I G U R E  1   Height measurement from the ground to the top of 
the tallest living shoot.

F I G U R E  2   Two light measurements were taken: (1) incident 
light measured above the crop or outside the plot if the crop was 
too high; and (2) transmitted light within the plant 10 cm above 
ground level.

T A B L E  2   Categorisation of frost events.

Categorisation of the frost event
Hourly minimum 
temperature

Extreme x ≤ −9.3°C

Severe −9.3°C < x ≤ −6°C

Moderate −6°C < x ≤ −3°C

Light −3°C < x ≤ 0°C
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      |  5MAGENAU et al.

was validated by exploring the correlation coefficient be-
tween the calculated and the actual soil data measured at 
each location in 2018/2019. The best fit was found for the 
correlation. A model was set up for each location, includ-
ing an additional model for snow days, if snow occurred. 
The base temperature was calculated according to Trybula 
et al. (2015) by a 1-week moving average of the daily air 
temperature in conjunction with the observed emergence 
dates.

The data were statistically analysed using the following 
linear model:

where � is the intercept; gi the ithhybrid effect; sj the jthsite 
effect; tl the lth year of measurement effect; rjkl the effect of 
the kthfield replicate at site j and in year l; (gs)ij and (gt)il the 
interaction effects of the ith hybrid with the jth site and lth 
year, respectively; (rst)jkl the interaction effect of the kth field 
replicate with the jth site and the lth year of measurement; 
(gst)ijl the interaction effect of the ith hybrid effect with the 
jth site and the lth year of measurement effect; and eijkl the 
residual error term corresponding to yilk. All effects except 
the error were assumed to be fixed. The final models were 
selected via Akaike information criterion. Where significant 
differences via global F test were found, a Fishers LSD test 
was performed for multiple comparisons. The least-square 
means were estimated and are presented with their standard 
deviation or a corresponding letter display in the results sec-
tion. Pre-requirements of homogeneous variance and nor-
mal distribution of residuals (despite the heterogeneity 
already accounted for by the model) were checked graphi-
cally using residual plots. In the cases of deviations from the 
assumptions, the data were square-root or logarithmically 
transformed. In such cases, means and standard deviations 
were back-transformed.

The statistical analysis was performed using the PROC 
MIXED procedure of Statistical Analysis Software SAS 
version 9.4 (SAS Institute Inc.). Figures were produced 
with the R program (R Core Team, 2019) package ggplot2 
(Wickham, 2009).

3   |   RESULTS

3.1  |  Weather conditions

On average between 2009 and 2019, the coldest location 
of the four trial sites was OLI, followed by TWS, ZAG and 
PAC (Table 3). The site at OLI, located in south Germany, 
had minimum winter temperatures as low as −20°C due 
to the high altitude. Late spring frosts occurred frequently 
but in summer, temperatures exceeded those at the most 
northern site TWS, which has a more moderate temperate 
climate due to its close proximity to the sea. The climate at 
ZAG and PAC is Mediterranean, with slightly higher tem-
peratures at PAC. Several touches of frost occurred over 
winter at both locations but the risk of late spring frost is 
relatively low due to a more rapid temperature increase 
in spring. At TWS and ZAG, the monthly average air 
temperature between January and July in the two study 
years were in a similar range to the average of the previous 
10 years. At PAC by contrast, both years were colder. At 
OLI, January and February 2020 were relatively mild but 
April and May 2021 were comparably cold. However, at 
all four sites, the 10-year average between 2009 and 2019 
was relatively warm compared to previous decades due to 
the effect of global warming.

At all four sites, January to June was warmer in 2020 
than in 2021 (Figure 3). Late spring frosts occurred at all 
locations in both years but with variations in magnitude 
and frequency. At TWS and OLI, they occurred in mid-
May in 2020, while in 2021, more frosts occurred between 
January and April. TWS was frost-free from the end of 
April and OLI from the beginning of May. At ZAG, the 
latest frost occurred in April in both years. At PAC the lat-
est frost was in early April in 2020 and mid-April in 2021.

Between 2009 and 2019, the lowest total annual pre-
cipitation was recorded at PAC, followed by OLI, TWS 
and ZAG (Table  3). At TWS and OLI, precipitation 
during the growth period (April–October) 2020 and 
2021 was similar to that of the previous 10 years. PAC 
and ZAG however were extremely dry during the growth 
period in 2021.

yijkl = � + gi + sj + tl + rjkl + (gs)ij + (st)jl + (gt)il + (gst)ijl + eijkl,

T A B L E  3   Mean temperature and total precipitation for year and vegetation period (1 April–31 October) for the field sites (TWS: 
Trawsgoed, UK; OLI: Oberer Lindenhof, Germany; ZAG: Zagreb, Croatia; and PAC: Piacenza, Italy).

Mean temperature (°C) Total precipitation (mm)

Year Vegetation period Year Vegetation period

2020 2021 2009–2019 2020 2021 2009–2019 2020 2021 10-year average 2020 2021 2009–2019

TWS 10.7 11.0 10.2 13.3 14.1 12.9 1484 1265 1245 744 613 653

OLI 8.6 7.5 8.1 12.7 11.7 12.8 801 878 899 549 683 632

ZAG 11.7 11.3 11.9 16.8 16.2 17.6 765 637 1409 581 388 874

PAC 13.9 13.4 15.9 19.6 19.1 22.0 740 160 820 418 38 453
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3.2  |  Emergence, growth period and 
canopy closure

New miscanthus shoots emerge from belowground plant 
organs (emergence type 1, Figure  4a) or from overwin-
tered, unharvested aboveground shoot parts (emergence 
type 2), either a previous year's shoot (Figure  4b) or an 

axillary bud (Figure 4c). However, the latter only occurs if 
the aboveground biomass does not die off over winter due 
to low temperatures without an isolating layer of snow. 
We observed that GRC 3 emerged mainly from above-
ground unharvested shoots parts but also to a lesser extent 
from belowground crop organs, whereas GRC 9, 14 and 15 
emerged from belowground organs only. Re-growth from 

F I G U R E  3   Temperatures at the four trial sites (TWS: Trawsgoed, UK; OLI: Oberer Lindenhof, Germany; ZAG: Zagreb, Croatia and 
PAC: Piacenza, Italy) between January and June. Grey line: average monthly temperatures in 2020; blue line: average monthly temperatures 
in 2021; dashed line: average monthly temperature from 2009 to 2019; grey area: daily minimum and maximum temperatures in 2020; blue 
area: daily minimum and maximum temperatures in 2021.

F I G U R E  4   Miscanthus emergence 
types: from below the ground (a); and 
from previous year's aboveground stubble: 
inside the previous year's shoot (b), and 
an axillary nodal meristem (c).
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      |  7MAGENAU et al.

axillary nodal meristems was not observed in these tri-
als, however, it has been previously observed for M × g in 
Aberystwyth, UK following a particularly mild winter. In 
our trials, GRC 9, 14 and 15 produced new shoots mainly 
at the beginning of the vegetation period whereas for M 
sin × sin emergence occurred throughout the vegetation 
period.

Due to the warmer temperatures in 2020, the hybrids 
emerged 20 days earlier than in 2021 (Figures 5 and 6). The 
largest difference between years was found for GRC 14 at 
PAC (41 days) and the lowest for GRC 14 at TWS (1 day). 
The lower temperatures in 2021 delayed emergence and 
reduced differences in emergence time between locations 
and hybrids. In both years, the hybrids emerged the earli-
est at the warmest site (PAC in 2020 and TWS in 2021) and 
latest at OLI, shortly after ZAG.

In 2020, GRC 3 was the first hybrid to emerge at all 
sites, presumably due to re-growth from aboveground 
overwintered shoots. The other hybrids emerged signifi-
cantly later, except for GRC 14 at PAC. The latest hybrid 
to emerge in 2020 was GRC 14 at TWS where the crop was 
heavily damaged by late spring frosts the previous year. By 
contrast, in 2021, it was the first hybrid to emerge. At ZAG 
and OLI, emergence occurred relatively synchronously in 
both years. A comparison of the four miscanthus hybrids 

showed that GRC 14 had the highest variation between 
emergence time, GRC 3 was generally the first hybrid to 
emerge, and GRC 9, GRC 14 and GRC 15 emerged late.

The base air temperature (7-day average of the air tem-
perature 2  m above soil level at the time of emergence) 
is presented in Table  4. It was significantly affected by 
location (p  < 0.001) and year (p  < 0.001). The 7-day soil 
temperature curve (5 cm below ground level) from the be-
ginning of the year until emergence shows that the soil 
base temperature had already been reached on several oc-
casions before re-growth occurred (Appendix S1).

The later emergence in 2021 than 2020 did not lead to 
later canopy closure (Figure 5). The hybrids at PAC closed 
the canopy around the same time in both years. At TWS 
and ZAG, canopy closure was even reached earlier in 2021 
than in 2020 (33 and 6 days earlier, respectively). However, 
at OLI, canopy closure was reached 15 days later in 2021 
than 2020.

The growth period in 2021 was 30% shorter than in 
2020 with the greatest decline observed at PAC (40%). 
OLI was the only site where the later emergence in 2021 
also led to a later canopy closure. However, this only led 
to a longer growth period in GRC 14. Late frost damage 
in spring 2021 (Figures 3 and 6) caused a significant re-
duction in the number of shoots compared to the previous 

F I G U R E  5   Growth period (grey bar, defined as the period between emergence and canopy closure) for each year and hybrid 
(GRC 3: Miscanthus sinensis × sinensis; GRC 9: M. × giganteus; GRC 14 and GRC 15: M. sacchariflorus × sinensis) and location (TWS: 
Trawsgoed, UK; OLI: Oberer Lindenhof, Germany; ZAG: Zagreb, Croatia and PAC: Piacenza, Italy). Identical letters indicate no significant 
difference (significance level α = 0.05) between emergence day (lowercase letters), growth period (uppercase letters) or day of canopy 
closure (bold, lowercase letters) for each location and year separately.
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8  |      MAGENAU et al.

year (Figure  7), resulting in 85% canopy closure in only 
three of the four plots. The same effect also occurred at 
TWS, where the number of shoots decreased significantly 

from 2018 to 2019 growing season, and in the 2021 grow-
ing season the number of shoots was even lower than in 
2018 (Figure 7).

3.3  |  Frost damage

The differing climatic conditions at the four sites (Figure 3) 
led to different effects of late frosts after the emergence of the 
hybrids (Figure 6). The measurements during the 2 years of 
the study showed variation in frost tolerance both between 
hybrids and between locations. Frost damage was visible 
with a delay of about a week after the frost event. The same 
frost damaged GRC 3 less severely than GRC 9 and 15, while 
GRC 14 was most severely damaged (Figure 6).

At PAC, on average the warmest site, the last frost 
(−3.3°C) was at the beginning of April in 2020 but on 17 
April in 2021 (−0.1°C). GRC 3 and 14 emerged 1 month 
earlier, GRC 9 and 15 half a month earlier in 2020 than 
2021. GRC 9, 14 and 15 were severely frost-damaged, 

F I G U R E  6   Average shoot height and frost damage scores per hybrid (GRC 3: Miscanthus sinensis × sinensis and GRC 14: M. 
sacchariflorus × sinensis, two novel seed-based miscanthus hybrids; GRC 15, a novel clone of M. sacchariflorus × sinensis, and GRC 9, a 
standard clone of M. × giganteus) at the four field sites (TWS: Trawsgoed, UK; OLI: Oberer Lindenhof, Germany; ZAG: Zagreb, Croatia and 
PAC: Piacenza, Italy) at the beginning of the growth period 2020 and 2021.

T A B L E  4   Average base air temperature for shoot emergence 
(7-day average at emergence in °C) in 2020 and 2021 for 
each hybrid (GRC 3: Miscanthus sinensis × sinensis; GRC 9: 
M. × giganteus; GRC 14 and GRC 15: M. sacchariflorus × sinensis) 
and location (TWS: Trawsgoed, UK; OLI: Oberer Lindenhof, 
Germany; ZAG: Zagreb, Croatia and PAC: Piacenza, Italy). 
Identical letters indicate no significant difference (α = 0.05) 
between base temperatures for each hybrid separately.

Location GRC 3 GRC 9 GRC 14 GRC 15

TWS 6.7 a 6.3 c 7.7 b 6.2 c

OLI 2.4 b 8.3 bc 4.9 c 7.6 b

ZAG 7.4 a 11.0 a 8.6 a 11.4 a

PAC 7.4 a 9.1 b 7.8 ab 9.1 b

Average 6.0 8.7 7.2 8.6
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      |  9MAGENAU et al.

while GRC 3 had only mild damage. In 2021, the last frost 
did not cause any damage as only GRC 3 had emerged and 
was able to tolerate the mild frost unharmed. At ZAG, the 
last frost occurred in mid-April in both years. In 2021, the 
hybrids did not emerge until shortly after that frost, so 
no damage occurred. However, in 2020, the hybrids had 
emerged by the beginning of April, and several moderate 
frosts killed the first shoots of GRC 14 and led to much 
lower growth rates during the first weeks after emergence 
in 2020 than 2021. The sites most affected by frost were 
TWS and OLI. After hybrid emergence, OLI experienced 
temperatures as low as −8°C (2  m above ground level), 
while at TWS, only minor frosts occurred. Here, the last 
frost was recorded in mid-May in 2020 and at the begin-
ning of May in 2021; the hybrids had emerged by mid-
March and early April, respectively. At OLI, the hybrids 
emerged between late March and mid-April in 2020, and 
in mid-April in 2021. Field trial observations indicate that 
the hybrids were less severely affected by frost at the be-
ginning of the growth period than by similar later occur-
ring frosts.

3.4  |  Number and height of shoots at 
end of growth period

In general, the shoot number increased from the first to 
the fourth growing season (Figure 7). However, a decrease 
compared to the previous year was found at some loca-
tions in some years. Significant decreases were found for 

GRC 3 and GRC 14. Additionally, GRC 14 was the only 
hybrid with a lower number of shoots in the fourth than in 
the first growth year at the two coldest sites, TWS and OLI. 
At TWS, the number of GRC 14 shoots decreased by 60% 
from 2018 to 2019 due to an early spring followed by cold 
temperatures in 2019. This led to early emergence, fol-
lowed by shoot dieback after frost. At OLI—the site with 
the latest spring frosts—the number of GRC 14 shoots de-
creased gradually from the second to the fourth growth 
year. At that site, the number of shoots decreased by 26% 
from 2020 to 2021 in all hybrids. In addition to GRC 14 
(−50%), the reduction in shoot count was also significant 
for GRC 3 (−37%). For GRC 3, the hybrid planted at dou-
ble the planting density of the other hybrids, a reduction 
in shoot number compared to the previous year was found 
at all four sites in either one growth year or the other. 
However, reduced shoot number was observed at TWS a 
year earlier than at the other three sites. Interestingly, this 
reduction also occurred at locations without late spring 
frosts. At those locations (PAC and ZAG), a more severe 
drought occurred in 2021.

At the end of the growth period, shoot height was gen-
erally lower in 2021 than 2020 (ZAG −26%, PAC −25%, 
OLI −10%), except for TWS (+11%) (Figure 8). It was sig-
nificantly lower for each hybrid at each location except for 
GRC 3 and 15 at TWS and GRC 9 at OLI. This may have 
been caused by late spring frosts and growth rate limitations 
during the growth period. The considerable height decreases 
from 2020 to 2021 at ZAG and PAC were most likely due to 
the lower rainfall (33% and 81%, respectively) during the 

F I G U R E  7   Number of big shoots 
at the end of growth year from the first 
(2018) until the fourth (2021) growth 
year (TWS: Trawsgoed, UK; OLI: Oberer 
Lindenhof, Germany; ZAG: Zagreb, 
Croatia and PAC: Piacenza, Italy; GRC 3: 
Miscanthus sinensis × sinensis and GRC 
14: M. sacchariflorus × sinensis, two novel 
seed-based miscanthus hybrids; GRC 15, a 
novel clone of M. sacchariflorus × sinensis, 
and GRC 9, a standard clone of M. × 
giganteus). Identical letters for the same 
hybrid and location indicate no significant 
difference (significance level α = 0.05) in 
number of shoots between years.
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10  |      MAGENAU et al.

growth period from April to October (Table 3). As a result of 
these interactions we did not observe that a more extended 
growth period leads to an increased shoot height at the end 
of the growing season. We did not find a significant effect 
of emergence day, time of canopy closure, or growth period 
on the end-of-season crop height at any location, including 
those not affected by drought (TWS and OLI), although 
there were other environmental effects (e.g. temperature 
and precipitation) at play during the growing period. As ex-
pected, the harvestable yield in spring following overwinter 
ripening generally correlated with shoot height in autumn, 
except where extreme environmental impacts occurred over 
winter, which had a hybrid-specific effect.

4   |   DISCUSSION

This study assessed the impact of spring temperatures on 
the early development of M × g and three new miscanthus 
hybrids, and the resulting end-of-year height, shoot num-
ber and spring yield. The aim of breeding is to achieve 
high yields for the provision of biomass for the bioecon-
omy, using available land as productively as possible. It 
endeavours to extend the period between canopy closure 
and end of the growth period, as this is the time of maxi-
mal biomass accumulation (Robson, Jensen, et al., 2013). 

An early canopy closure can be achieved by either a high 
planting density, a rapid early growth rate, or early emer-
gence. However, at sites with late spring frosts, early 
emergence comes with a high risk of damaging or killing 
the first shoots, if frost tolerance is not sufficient (Farrell 
et al., 2006). In this multi-location and multi-year experi-
ment, we found that emergence times, frost sensitivity 
and subsequent development vary between hybrids and 
locations.

4.1  |  Emergence and canopy closure

A colder spring not only led to later emergence (as ex-
pected) but also reduced differences in the time of emer-
gence between hybrids and locations. In 2020, the four 
hybrids analysed emerged between 5 March (DOY 65) 
and 10 April (DOY 101). In 2021, emergence was on aver-
age 20 days later, between 6 April (DOY 96) and 4 May 
(DOY 124). Other studies have reported shoot emergence 
in central Europe between March and April (Christian 
et al., 2008; Zub, Rambaud, et al., 2012) but in early May 
at a colder location in Canada (Friesen et al.,  2014). In 
our study, the anticipated south-to-north gradient in 
emergence date between the four analysed European 
sites (Italy, Croatia, Germany and the UK) was not 

F I G U R E  8   End-of-growth-year 
height and harvestable spring yield of 
the four miscanthus hybrids (GRC 3: 
Miscanthus sinensis × sinensis and GRC 
14: M. sacchariflorus × sinensis, two novel 
seed-based miscanthus hybrids; GRC 15, a 
novel clone of M. sacchariflorus × sinensis, 
and GRC 9, a standard clone of 
M. × giganteus) at each location (TWS: 
Trawsgoed, UK; OLI: Oberer Lindenhof, 
Germany; ZAG: Zagreb, Croatia and PAC: 
Piacenza, Italy) in the growth years 2020 
and 2021. Error bars indicate standard 
deviation.
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      |  11MAGENAU et al.

substantiated. When comparing the hybrids, it was found 
that M sin  ×  sin emerged earlier than the other three 
hybrids at all sites. In 2020, it was on average 15 days 
earlier but in 2021 only 5 days earlier. Interestingly, 
Farrell et al.  (2006) and Clifton-Brown et al.  (2002) de-
termined diverse emergence patterns between different 
miscanthus hybrids, even though both studies were con-
ducted at the same location in south Germany. While 
Farrell et al. (2006) reported an approximately 1-month 
earlier emergence of M sin, Clifton-Brown et al.  (2002) 
identified a concurrent emergence of M sin and M × g and 
a two-week later emergence of M sac. Our results corre-
spond to the findings of Farrell et al. (2006) but with sub-
stantially shorter times between emergence dates. This 
different observations could be due to differences in re-
growth type. Type 1 emerges aboveground, from unhar-
vested plant parts and is typical of M sin. M sin × sin (GRC 
3) emerges partly from aboveground stubbles when these 
are not killed over winter, otherwise from belowground 
meristems. Type 2 emerges from belowground rhizomes, 
and is typical of M sac. These different types of resprout-
ing impact the signalling and the timing of resprouting, 
and are considered to be predominantly controlled by air 
and soil temperature.

Base temperature (7-day average air temperature on 
the day of emergence) is a parameter widely used in mod-
elling. For the four miscanthus hybrids analysed in this 
study, it ranged between 6 and 9°C. The lowest mean base 
temperature was found for M sin × sin (GRC 3: 6.0°C), fol-
lowed by the seed-based M sac × sin (GRC 14: 7.2°C), the 
rhizome-based M sac × sin (GRC 15: 8.6°C) and the highest 
for M × g (GRC 9: 8.7°C). In the literature, base tempera-
tures in a similar range were found for M sin (6.0–7.6°C), 
M sac (8.6°C) and M × g (8.0–8.6°C) (Farrell et al., 2006, 
Koike et al.,  1975 cited by Stewart et al.,  2009, Trybula 
et al., 2015). We found higher base temperatures for the 
warmer of the four analysed locations. One reason could 
be the weekly measurement interval being too coarse 
to capture these dynamics sufficiently accurately when 
spring temperatures are rising fast. In the Mediterranean 
climate (PAC and ZAG) a week's difference has a substan-
tial temperature effect. Monitoring emergence at shorter 
intervals would therefore be advisable in future field as-
sessments of miscanthus. This could increase the preci-
sion and may reduce the estimated base temperatures. As 
air temperatures fluctuate greatly for type 2 emergence hy-
brids, soil temperatures at a depth of ~5 cm are likely to be 
a better predictor of emergence time. For this reason, we 
estimated the soil temperature at a depth of 5 cm based on 
the air temperature (2 m above ground) at each location. 
This gave a soil base temperature of 3.1°C for M sin × sin 
(GRC 3), 4.2°C for the seed-based M sac × sin (GRC 14), 
and 5.2°C for both the rhizome-based M sac × sin (GRC 

15) and M × g (GRC 9) hybrids. However, climate cham-
ber studies have found that higher temperatures are re-
quired for rhizomes to sprout (Farrell et al.,  2006). The 
reason for this could be that it is not the average soil tem-
perature but the diurnal temperature variations, which 
are decisive for the time of emergence. Soil temperatures 
above the base temperature lead to shoot elongation, 
those below base temperature cause stagnation, and frosts 
below −3.5°C kill belowground shoots (Clifton-Brown 
& Lewandowski, 2000). To further explore these correla-
tions, the soil temperature needs to be measured at the 
same time and same position (below- or above-ground, 
depending on the emergence type) as the growing shoot 
meristems. Additionally, the effects of soil moisture con-
tent, the litter layer and the rhizome-soil ratio on soil tem-
perature need to be analysed.

Both air and estimated soil base temperatures were 
reached before emergence at each location and, consider-
ing the temperature curve, it seems reasonable that either 
a specific thermal time needs to be reached, or that multi-
ple factors trigger emergence. In general, thermal time is 
a reliable indicator for the emergence of individual annual 
crops (Steinmaus et al., 2000). In our study, taking a mean 
thermal time over the four trial sites with a base tem-
perature of 0°C gave 400 degree days for M sin × sin (GRC 
3), 440 degree days for the seed-based M sac × sin (GRC 
14), and 460 degree days for both the rhizome-based M 
sac×sin (GRC 15) and M × g (GRC 9). Increasing the base 
temperature for the calculation of degree days reduces the 
differences between the hybrids. However, more in-depth 
investigation of the thermal time is required, as perennial 
crops are not sown annually and, as such, the starting 
point for calculating thermal time needs to be determined. 
It may transpire that the thermal time of measured soil 
temperature is better for predicting the emergence of mis-
canthus hybrids than air temperature. Complex genetic 
processes such as a requirement for cold (vernalisation) 
also need to be considered. In this study, we found that, 
in addition to temperature, the photoperiod also signifi-
cantly affects emergence. One reason for this could be the 
correlation with increased variation in diurnal soil tem-
perature. Winter dormancy in temperate herbaceous pe-
rennials generally differs considerably between and within 
species and is induced by G × E interaction (Brummer 
et al., 2000; Muthoni et al., 2014). Photoperiod and tem-
perature are probably central environmental factors for 
flowering and dormancy control of rhizomes. These two 
processes are linked in winter dormant herbaceous pe-
rennials because of several shared genes (Horvath, 2009; 
Sarath et al.,  2014). Factors implicated in breaking win-
ter dormancy are extended periods of cold temperatures 
(Chao et al.,  2007; Horvath,  2009), increasing photope-
riod (Heide,  2001; Sønsteby & Heide,  2006), extreme 
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temperatures, and intra-day fluctuation of temperature 
(Muthoni et al., 2014). Other factors may also influence the 
emergence of miscanthus including the age of the stand, 
as younger crops are more vulnerable to soil tempera-
tures, probably due to the lower amount of rhizome mass 
(Jørgensen, 1995; Pude et al., 1997) or the time or method 
of harvest. The onset of emergence in annual crops is con-
trolled by the time of sowing. However, for perennials, 
the only management option is the time of harvest. The 
soil temperature rises at a faster rate when the previous 
year's biomass is harvested earlier, so the biomass does 
not function as an insulation layer. Strullu et al.  (2011) 
found a 4-day difference between early and late harvests 
due to the mulch layer of dead leaves, which delayed the 
soil temperature rise. Zub, Rambaud, et al.  (2012) how-
ever did not identify an effect of harvest time on emer-
gence. One reason for this could be that these differences 
disappear within a few days. In a separate field trial at the 
same location as the German site, no differences were no-
ticeable between autumn and spring harvest after 8 days 
(data not shown). In conclusion, our results show a signif-
icant effect of temperature on emergence with differences 
between hybrids, and this corresponds to the findings of 
other studies (Clifton-Brown et al., 2011; Clifton-Brown & 
Jones, 1997; Farrell et al., 2006). Soil thermal time is prob-
ably the best predictor for the estimation of emergence but 
this needs to be proven by further measurement of growth 
and temperature at and just below the soil surface where 
the meristems responsible for spring regrowth are located.

In 2021, emergence was generally 20 days later but 
canopy closure was reached 36 days earlier than in 2020. 
This indicates a ‘catch-up effect’ but the stand age may 
also play a role. The catch-up effect can be explained by 
thermal time. To achieve the same thermal time, more 
than twice as many calendar days are required in spring 
than in summer. This suggests that later emergence does 
not substantially affect biomass yield, since the main 
biomass formation occurs during summer. Early canopy 
closure increases the light interception (Clifton-Brown & 
Jones, 1997; Sage et al., 2015); however, in this study, au-
tumn shoot height—which according to Robson, Farrar, 
et al.  (2013) correlates strongly with biomass yield—did 
not correlate with the length of the growth season. Biomass 
accumulation was most likely influenced by the weather 
patterns over these particular summer growing seasons 
and further observations in other years and locations are 
needed to test the generality of the emergence and growth 
projections. In 2021, the sites in Italy and Croatia were af-
fected by a severe drought, which had a strong influence 
on crop height. Similarly to Zub, Rambaud, et al. (2012), 
we did not find the increase in yield due to a longer can-
opy duration reported by Robson, Farrar, et al.  (2013). 
In contrast to emergence, which seems to be mainly 

temperature-driven, canopy closure appears to be defined 
by the photoperiod and is thus independent of emergence 
time.

4.2  |  Frost tolerance of 
miscanthus hybrids

In general, the killing of shoots by late spring frosts re-
duces the total shoot number and shortens the growth 
period in the respective year. We found that M sin×sin 
(GRC 3) tolerated more severe frost than M × g (GRC 9), 
and the most frost-affected hybrid was the seed-based 
M sac×sin (GRC 14). A single frost was enough to dam-
age the crop severely and frost tolerance decreased with 
increasing shoot height. Earlier studies (Clifton-Brown 
et al.,  2002; Farrell et al.,  2006; Fonteyne et al.,  2016) 
have also identified M sac to be less frost-tolerant than 
M × g and M sin. Emerging shoots of M × g have been 
found to be less cold-tolerant than some M sin hy-
brids (Farrell et al.,  2006; Friesen et al.,  2014; Jones 
et al.,  2001; Zub, Arnoult, et al.,  2012; Zub, Rambaud, 
et al.,  2012). The results of our study indicate that the 
frost tolerance of miscanthus shoots decreases within 
the first weeks of emergence. This corresponds with 
the results of Zub, Arnoult, et al. (2012), who identified 
higher frost tolerance at the 3- to 5-leaf stage than at 
the 6- to 7-leaf stage. We classified the severity of frost 
events according to air temperature 2 m above ground 
level. However, when the air temperature at this height 
is around 0°C, the temperature at ground level can fall 
well below 0°C, causing a ground or grass frost (Geiger 
et al., 1995). To validate the results of this study, future 
research should additionally measure air temperature at 
soil level. In summary, late spring frost damage depends 
on the minimum temperature, exposure to sunlight at 
dawn, and frost tolerance and development stage of the 
hybrid.

4.3  |  Emergence strategies of 
miscanthus hybrids

Despite its early emergence, M sin × sin (GRC 3) copes 
well with late spring frost due to its high frost tolerance, 
increased number of shoots and the production of new 
shoots during the growth period. By contrast, M × g (GRC 
9) and M sac × sin (GRC 14 and 15) have low frost tolerance 
and a low number of shoots which are produced mainly at 
the beginning of the growing season. This increases the 
likelihood in M × g and M sac × sin that a higher propor-
tion of the total shoot meristems emerge and then are 
damaged by late spring frosts. We found that M sin × sin 
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      |  13MAGENAU et al.

(GRC 3) has a more effective strategy for avoiding dam-
age from late spring frosts: firstly, later emergence and 
secondly, higher frost tolerance. This could help explain 
why M sin × sin achieves higher yields than M × g and 
M sac×sin at colder locations (Awty-Carroll et al.,  2022; 
Magenau et al., 2022).

Analysis of end-of-year shoot number showed a gen-
eral increase from the first to the fourth growth year for 
all hybrids and locations. However, deceases from 1 year 
to the next did occur: for M sac × sin (GRC 14) in years 
with late spring frosts, and for M sin×sin (GRC 3) mainly 
from the third to the fourth growth year. M × g (GRC 9) 
had the lowest shoot number of all four hybrids, which 
increased continuously at all four locations from an av-
erage of 8.9 (4.4–16.8) shoots per plant in the first year to 
32.6 (23.2–42.5) in the fourth year. The novel seed-based 
M sac×sin (GRC 14) emerged early in 2020 and 2021 at 
both the German and the UK site and was damaged by 
successive spring frosts. Accumulative damage appears 
to have caused a continuous decrease in shoot number, 
presumably by depletion of both active meristems and the 
reserves within the rhizome (Christian & Haase,  2001; 
Schwarz et al., 1994). Indeed, in 2021, M sac×sin (GRC 14) 
failed to reach the threshold for canopy closure (85% light 
interception) at TWS, and was also very late at OLI. The 
effects of late spring frosts on shoot reduction in the fol-
lowing growth years needs to be further analysed but such 
analyses can be confounded by the increasing interplant 
competition for light, which results in a self-thinning ef-
fect in mature M × g stands. Interplant competition was 
not observed in this study because the trials were less than 
4 years old. In older trials however, reductions in shoot 
numbers would be expected, especially at the high plant-
ing density of 3 plants m−2 used for the M sin × sin (GRC 
3) hybrid.

4.4  |  Conclusion and outlook

With continued climate change, the occurrence of frosts 
after the onset of emergence is predicted to increase. 
Thus frost tolerance of the newly emerged shoots re-
mains an important trait impacting yield potential. 
Hybrids with particularly early emergence can only ben-
efit from the extended growing season if lethal frosts do 
not occur after emergence. The field data presented here 
shows how severe late frosts after emergence weaken 
the plants, reducing the number of shoots for canopy, 
and thus yield formation. In extreme cases with multi-
ple frost events between March and May, this can even 
result in plant death. Dead plants leave gaps in stands 
with negative consequences for yield. We found slightly 
higher frost tolerance in the M sin × sin hybrid than in 

the M × g and M sac × sin hybrids. The M sin × sin hybrid 
also produced successive new shoots from the plant base 
throughout the growing season and we hypothesise that 
this may be an effective strategy for recovery from late 
spring frosts. Based solely on the results of these trials, 
we recommend M sin × sin for locations with higher risk 
of late spring frosts and M sac × sin for locations with 
low risk of late spring frosts. Drawing on results from 
earlier trials, we recommend extending the pool of M sac 
parents for the development of new M sac × sin hybrids 
by including germplasm collected at colder sites with 
higher latitudes and altitudes. ‘Within-population ge-
netic improvement’ can be achieved through recurrent 
selection. This should result in hybrids with more frost 
tolerance—either by delayed emergence (avoidance) or 
increased frost resistance to late spring frosts. Such hy-
brids already exist as clones but the challenge is now to 
transfer this knowledge to seed-based hybrids that can 
be upscaled to large areas. This is necessary to generate 
the large quantities of biomass needed for products and 
energy from a range of marginal land types, whilst deliv-
ering a spectrum of ecosystem benefits.
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