23 research outputs found

    Strategies of the honeybee Apis mellifera during visual search for vertical targets presented at various heights: a role for spatial attention?

    Get PDF
    When honeybees are presented with a colour discrimination task, they tend to choose swiftly and accurately when objects are presented in the ventral part of their frontal visual field. In contrast, poor performance is observed when objects appear in the dorsal part. Here we investigate if this asymmetry is caused by fixed search patterns or if bees can use alternative search mechanisms such as spatial attention, which allows flexible focusing on different areas of the visual field. We asked individual honeybees to choose an orange rewarded target among blue distractors. Target and distractors were presented in the ventral visual field, the dorsal field or both. Bees presented with targets in the ventral visual field consistently had the highest search efficiency, with rapid decisions, high accuracy and direct flight paths. In contrast, search performance for dorsally located targets was inaccurate and slow at the beginning of the test phase, but bees increased their search performance significantly after a few learning trials: they found the target faster, made fewer errors and flew in a straight line towards the target. However, bees needed thrice as long to improve the search for a dorsally located target when the target's position changed randomly between the ventral and the dorsal visual field. We propose that honeybees form expectations of the location of the target's appearance and adapt their search strategy accordingly. Different possible mechanisms of this behavioural adaptation are discussed.L.M. was recipient of a DOC-fFORTE fellowship of the Austrian Academy of Science at the Department of Integrative Zoology, University of Vienna. L.C. is supported by an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award

    Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    Get PDF
    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation

    Simultaneous mastering of two abstract concepts by the miniature brain of bees

    No full text
    Sorting objects and events into categories and concepts is a fundamental cognitive capacity that reduces the cost of learning every particular situation encountered in our daily lives. Relational concepts such as 'same','different','better than', or 'larger than', among others - are essential in human cognition because they allow highly efficient classifying of events irrespective of physical similarity. Mastering a relational concept involves encoding a relationship by the brain independently of the physical objects linked by the relation and is, therefore, consistent with abstraction capacities. Processing several concepts at a time presupposes an even higher level of cognitive sophistication that is not expected in an invertebrate. We found that the miniature brains of honey bees rapidly learn to master two abstract concepts simultaneously, one based on spatial relationships (above/below and right/left) and another based on the perception of difference. Bees that learned to classify visual targets by using this dual concept transferred their choices to unknown stimuli that offered a best match in terms of dual-concept availability: their components presented the appropriate spatial relationship and differed from one another. This study reveals a surprising facility of brains to extract abstract concepts from a set of complex pictures and to combine them in a rule for subsequent choices. This finding thus provides excellent opportunities for understanding how cognitive processing is achieved by relatively simple neural architectures

    Surpassing the subitizing threshold: appetitive-aversive conditioning improves discrimination of numerosities in honeybees

    No full text
    Animals including humans, fish and honeybees have demonstrated a quantity discrimination threshold at four objects, often known as subitizing elements. Discrimination between numerosities at or above the subitizing range is considered a complex capacity. In the current study, we trained and tested two groups of bees on their ability to differentiate between quantities (4 versus 5 through to 4 versus 8) when trained with different conditioning procedures. Bees trained with appetitive (reward) differential conditioning demonstrated no significant learning of this task, and limited discrimination above the subitizing range. In contrast, bees trained using appetitive-aversive (reward-aversion) differential conditioning demonstrated significant learning and subsequent discrimination of all tested comparisons from 4 versus 5 to 4 versus 8. Our results show conditioning procedure is vital to performance on numerically challenging tasks, and may inform future research on numerical abilities in other animals

    Numerical cognition in honeybees enables addition and subtraction

    No full text
    Many animals understand numbers at a basic level for use in essential tasks such as foraging, shoaling, and resource management. However, complex arithmetic operations, such as addition and subtraction, using symbols and/or labeling have only been demonstrated in a limited number of nonhuman vertebrates. We show that honeybees, with a miniature brain, can learn to use blue and yellow as symbolic representations for addition or subtraction. In a free-flying environment, individual bees used this information to solve unfamiliar problems involving adding or subtracting one element from a group of elements. This display of numerosity requires bees to acquire long-term rules and use short-term working memory. Given that honeybees and humans are separated by over 400 million years of evolution, our findings suggest that advanced numerical cognition may be more accessible to nonhuman animals than previously suspected

    Numerical ordering of zero in honey bees

    No full text
    Some vertebrates demonstrate complex numerosity concepts-including addition, sequential ordering of numbers, or even the concept of zero-but whether an insect can develop an understanding for such concepts remains unknown. We trained individual honey bees to the numerical concepts of "greater than" or "less than" using stimuli containing one to six elemental features. Bees could subsequently extrapolate the concept of less than to order zero numerosity at the lower end of the numerical continuum. Bees demonstrated an understanding that parallels animals such as the African grey parrot, nonhuman primates, and even preschool children
    corecore