1,089 research outputs found

    Search for a Higgs Boson Decaying into Two Photons with the L3 Detector at LEP

    Get PDF
    A search is performed for a Higgs boson, decaying into two photons, using the L3 data collected at centre of mass energies between s\sqrt s = 189 and 202 GeV, corresponding to an integrated luminosity of 400 pb−1^{-1}. The processes e+e−→Zh→qqˉγγe^{+}e^{-}\to {Zh} \to {q} \bar{q} \gamma \gamma , e+e−→Zh→ννˉγγe^{+}e^{-}\to {Zh} \to \nu \bar{\nu} \gamma \gamma , e+e−→Zh→l+l−γγe^{+}e^{-}\to {Zh} \to {l}^{+} {l}^{-} \gamma \gamma are considered. The observed data are found to be consistent with the expected background from standard physics processes. Limits on the branching fraction of the Higgs boson decay into two photons as a function of the Higgs mass are shown and a lower mass limit on a fermiophobic Higgs is derived.Comment: 3 pages, 2 postscript figures, Presented at the DPF2000 Conference, August 9-12, 2000, The Ohio State University, Columbus, Ohi

    Scale-Free Phenomena in Communication Networks: A Cross-Atlantic Comparison

    Get PDF
    ?Small-world networks? have a high degree of local clustering or cliqueness, like a regular lattice and a relatively short average minimum path, like a completely random network. The huge appeal of ?small-world networks? lies in the impact they are said to have on dynamical systems. In a transportation network, ?small-world? topology could improve the flow of people or goods through the network, which has important implications for the design of such networks. Preliminary research has shown that ?small-world network? phenomenon can arise in traffic networks possessing ?small-world? network topology (i.e., in a network that has a structure somewhere in between a regular lattice and random graph) and that, at least under certain circumstances, traffic appears to flow more efficiently through a network with such topology (Schintler and Kulkarni, 2000). This paper will explore this further through simulation under varying assumptions regarding the size of the network (i.e., in terms of number of nodes and edges), the level of traffic in the network, the uniformity of nodes and edges and the information levels of travelers in the network. The simulations will be done using the random rewiring process introduced by Watts and Strogatz (1998), where each time the network is rewired, the distribution of traffic and congestion through the network, and the ?small-world? network parameters, shortest average minimum path and clustering coefficient, will be examined. Traffic flow will be estimated using a gravity model framework and a route choice optimization program. The simulations will also be used to reveal whether or not there are certain nodes or links that suffer at the expense of the entire network becoming more efficient. In addition, the possibility of a self-organised criticality (SOC) structure will be examined. The concept, introduced by Bak et al.,(1987), gained a great deal of attention in past decades for its capability to explore the significant and structural transformation of a dynamic system. SOC sets out how prominent exogenous forces together with strong localized interactions at the micro level lead a system to a critical state at the macro-level. A further step in our analysis is the investigation of whether a power-law distribution, characteristic of the SOC state, evolves in the traffic network. While ?small-world? network topology may be shown to improve the efficiency of traffic flow through a network, it should be recognized that ?small-world? networks are sparse by nature. The shut down or major disruption of any link in such a network, particularly one with heavy congestion, could provoke significant disorder. This paper will also explore the effect that disruptions of this nature have on networks designed with a high degree of local clustering and a short average minimum path. The fact that a ?small-world? network is sparse also raises other issues for the transportation planner. If ?small-world? topology is in fact a desirable property for transportation networks, how do we transform existing networks to produce these results? Unlike other networks, such as those for telecommunications or socialization, a transportation network cannot be rewired to achieve a more efficient network structure. This issue will also be addressed in the paper. REFERENCES Bak, P., C. Tang, and K. Wiesenfeld (1987), ?Self-Organised Criticality?, Physical Review Letters, Vol. 59 (4), pp. 381-384. Watts, D.J. and S.H. Strogatz (1998). ?Collective Dynamics of ?Small-World? Networks? Nature, Vol 393, 4, pp. 440-442. Schintler, L.A. and R. Kulkarni (2000). ?The Emergence of Small-World Phenonmenon in Urban Transportation Networks? in Reggiani, A. (ed.), Spatial Economic Science: New Frontiers in Theory and Methodology, Springer-Verlag, Berlin-NewYork, pp. 419-434.

    El marc jurídic : dret comparat

    Get PDF
    A partir d'una primera aproximació a les dades socioeconòmiques sobre la mediació als Estats Units, Austràlia, Nova Zelanda, Llatinoamèrica, Àsia i Europa, i després d'una anàlisi de les previsions normatives en matèria de mediació existents a l'actualitat, s'ha procedit a la identificació de certs principis i estàndards que han permès una delimitació progressiva del concepte de mediació desenvolupat en l'experiència estrangera dels diferents estats nacionals i dels organismes supranacionals i internacionals. Delimitat el concepte, l'estudi aborda una segona etapa, consistent en la comprensió del fenomen mediador en el context de les diverses cultures i tradicions jurídiques, així com en els diversos contextos socioeconòmics en els quals la mediació es desenvolupa principalment, tot identificant els àmbits d'aplicació materials i orgànics. Finalment, després d'una atenta identificació del concepte i descripció legal de la mediació existent a Espanya i Catalunya, el present estudi es conclou amb un exercici de contrast, a fi d'identificar els aspectes transversals i transnacionals que puguin resultar aplicables en una futura regulació de la mediació a Catalunya

    NIHAO XX: The impact of the star formation threshold on the cusp-core transformation of cold dark matter haloes

    Full text link
    We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the impact of the threshold for star formation on the response of the dark matter (DM) halo to baryonic processes. The fiducial NIHAO threshold, n=10 cm−3n=10\, {\rm cm}^{-3}, results in strong expansion of the DM halo in galaxies with stellar masses in the range 107.5<Mstar<109.5M⊙10^{7.5} < M_{star} < 10^{9.5} M_{\odot}. We find that lower thresholds such as n=0.1n=0.1 (as employed by the EAGLE/APOSTLE and Illustris/AURIGA projects) do not result in significant halo expansion at any mass scale. Halo expansion driven by supernova feedback requires significant fluctuations in the local gas fraction on sub-dynamical times (i.e., < 50 Myr at galaxy half-light radii), which are themselves caused by variability in the star formation rate. At one per cent of the virial radius, simulations with n=10n=10 have gas fractions of ≃0.2\simeq 0.2 and variations of ≃0.1\simeq 0.1, while n=0.1n=0.1 simulations have order of magnitude lower gas fractions and hence do not expand the halo. The observed DM circular velocities of nearby dwarf galaxies are inconsistent with CDM simulations with n=0.1n=0.1 and n=1n=1, but in reasonable agreement with n=10n=10. Star formation rates are more variable for higher nn, lower galaxy masses, and when star formation is measured on shorter time scales. For example, simulations with n=10n=10 have up to 0.4 dex higher scatter in specific star formation rates than simulations with n=0.1n=0.1. Thus observationally constraining the sub-grid model for star formation, and hence the nature of DM, should be possible in the near future.Comment: 18 pages, 13 figures, accepted to MNRA

    The edge of galaxy formation III: The effects of warm dark matter on Milky Way satellites and field dwarfs

    Full text link
    In this third paper of the series, we investigate the effects of warm dark matter with a particle mass of mWDM=3 keVm_\mathrm{WDM}=3\,\mathrm{keV} on the smallest galaxies in our Universe. We present a sample of 21 hydrodynamical cosmological simulations of dwarf galaxies and 20 simulations of satellite-host galaxy interaction that we performed both in a Cold Dark Matter (CDM) and Warm Dark Matter (WDM) scenario. In the WDM simulations, we observe a higher critical mass for the onset of star formation. Structure growth is delayed in WDM, as a result WDM haloes have a stellar population on average two Gyrs younger than their CDM counterparts. Nevertheless, despite this delayed star formation, CDM and WDM galaxies are both able to reproduce the observed scaling relations for velocity dispersion, stellar mass, size, and metallicity at z=0z=0. WDM satellite haloes in a Milky Way mass host are more susceptible to tidal stripping due to their lower concentrations, but their galaxies can even survive longer than the CDM counterparts if they live in a dark matter halo with a steeper central slope. In agreement with our previous CDM satellite study we observe a steepening of the WDM satellites' central dark matter density slope due to stripping. The difference in the average stellar age for satellite galaxies, between CDM and WDM, could be used in the future for disentangling these two models.Comment: 10 pages, 11 figures, accepted for publication on MNRA

    NIHAO XI: Formation of Ultra-Diffuse Galaxies by outflows

    Full text link
    We address the origin of Ultra-Diffuse Galaxies (UDGs), which have stellar masses typical of dwarf galaxies but effective radii of Milky Way-sized objects. Their formation mechanism, and whether they are failed L⋆\rm L_{\star} galaxies or diffuse dwarfs, are challenging issues. Using zoom-in cosmological simulations from the NIHAO project, we show that UDG analogues form naturally in medium-mass haloes due to episodes of gas outflows associated with star formation. The simulated UDGs live in isolated haloes of masses 1010−11M⊙10^{10-11}\rm M_{\odot}, have stellar masses of 107−8.5M⊙10^{7-8.5}\rm M_{\odot}, effective radii larger than 1 kpc and dark matter cores. They show a broad range of colors, an average S\'ersic index of 0.83, a typical distribution of halo spin and concentration, and a non-negligible HI gas mass of 107−9M⊙10^{7-9}\rm M_{\odot}, which correlates with the extent of the galaxy. Gas availability is crucial to the internal processes that form UDGs: feedback driven gas outflows, and subsequent dark matter and stellar expansion, are the key to reproduce faint, yet unusually extended, galaxies. This scenario implies that UDGs represent a dwarf population of low surface brightness galaxies and should exist in the field. The largest isolated UDGs should contain more HI gas than less extended dwarfs of similar M⋆\rm M_{\star}.Comment: matches accepted version, MNRAS Letter 2016-10-1
    • …
    corecore