7,991 research outputs found
Green function theory of dirty two-band superconductivity
We study the effects of random nonmagnetic impurities on the superconducting
transition temperature in a two-band superconductor, where we assume the
equal-time spin-singlet s-wave pair potential in each conduction band and the
hybridization between the two bands as well as the band asymmetry. In the clean
limit, the phase of hybridization determines the stability of two states:
called and . The interband impurity scatterings decrease
of the two states exactly in the same manner when the Hamiltonian preserves
time-reversal symmetry. We find that a superconductor with larger hybridization
shows more moderate suppression of . This effect can be explained by the
presence of odd-frequency Cooper pairs which are generated by the band
hybridization in the clean limit and are broken by impurities.Comment: 11 pages, 2 figure
Observability of surface Andreev bound states in a topological insulator in proximity to an s-wave superconductor
To guide experimental work on the search for Majorana zero-energy modes, we
calculate the superconducting pairing symmetry of a three-dimensional
topological insulator in combination with an s-wave superconductor. In analogy
to the case of nanowires with strong spin-orbit coupling we show how the
pairing symmetry changes across different topological regimes. We demonstrate
that a dominant p-wave pairing relation is not sufficient to realize a Majorana
zero-energy mode useful for quantum computation. Our main result of this paper
is the relation between odd-frequency pairing and Majorana zero energy modes by
using Green functions techniques in three-dimensional topological insulators in
the so-called Majorana regime. We discuss thereafter how the pairing relations
in the different regimes can be observed in the shape of the tunneling
conductance of an s-wave proximized three-dimensional topological insulator. We
will discuss the necessity to incorporate a ferromagnetic insulator to localize
the zero-energy bound state to the interface as a Majorana mode.Comment: Accepted for publication in Journal of Physics: Condensed Matte
Dirty two-band superconductivity with interband pairing order
We study theoretically the effects of random nonmagnetic impurities on the
superconducting transition temperature in a two-band superconductor
characterized by an equal-time s-wave interband pairing order parameter. The
Fermi-Dirac statistics of electrons allows a spin-triplet s-wave pairing order
as well as a spin-singlet s-wave order parameter due to the two-band degree of
freedom. In a spin-singlet superconductor, is insensitive to the impurity
concentration when we estimate the self-energy due to the random impurity
potential within the Born approximation. On the other hand in a spin-triplet
superconductor, decreases with the increase of the impurity
concentration. We conclude that Cooper pairs belonging to odd-band-parity
symmetry class are fragile under the random impurity potential even though they
have s-wave pairing symmetry.Comment: 7 pages, 2 figures embedde
Josephson Effect due to Odd-Frequency Pairs in Diffusive Half Metals
Motivated by a recent experiment [Keizer et al., Nature (London) 439, 825 (2006)], we study the Josephson effect in superconductor/diffusive half metal/superconductor junctions using the recursive Green function method. The spin-flip scattering at the junction interfaces opens the Josephson channel of the odd-frequency spin-triplet Cooper pairs. As a consequence, the local density of states in a half metal has a large peak at the Fermi energy. Therefore the odd-frequency pairs can be detected experimentally by using the scanning tunneling spectroscopy
Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos
Gamma-ray bursts are the most concentrated explosions in the Universe. They
have been detected electromagnetically at energies up to tens of GeV, and it is
suspected that they could be active at least up to TeV energies. It is also
speculated that they could emit cosmic rays and neutrinos at energies reaching
up to the eV range. Here we review the recent developments in
the photon phenomenology in the light of \swift and \fermi satellite
observations, as well as recent IceCube upper limits on their neutrino
luminosity. We discuss some of the theoretical models developed to explain
these observations and their possible contribution to a very high energy cosmic
ray and neutrino background.Comment: 12 pages, 7 figures. Text of a plenary lecture at the PASCOS 12
conference, Merida, Yucatan, Mexico, June 2012; to appear in J.Phys. (Conf.
Series
Zone Diagrams in Euclidean Spaces and in Other Normed Spaces
Zone diagram is a variation on the classical concept of a Voronoi diagram.
Given n sites in a metric space that compete for territory, the zone diagram is
an equilibrium state in the competition. Formally it is defined as a fixed
point of a certain "dominance" map.
Asano, Matousek, and Tokuyama proved the existence and uniqueness of a zone
diagram for point sites in Euclidean plane, and Reem and Reich showed existence
for two arbitrary sites in an arbitrary metric space. We establish existence
and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary
(finite) dimension, and more generally, in a finite-dimensional normed space
with a smooth and rotund norm. The proof is considerably simpler than that of
Asano et al. We also provide an example of non-uniqueness for a norm that is
rotund but not smooth. Finally, we prove existence and uniqueness for two point
sites in the plane with a smooth (but not necessarily rotund) norm.Comment: Title page + 16 pages, 20 figure
Influence of magnetic impurities on charge transport in diffusive-normal-metal / superconductor junctions
Charge transport in the diffusive normal metal (DN) / insulator / - and -wave superconductor junctions is studied in the presence of magnetic
impurities in DN in the framework of the quasiclassical Usadel equations with
the generalized boundary conditions. The cases of - and d-wave
superconducting electrodes are considered. The junction conductance is
calculated as a function of a bias voltage for various parameters of the DN
metal: resistivity, Thouless energy, the magnetic impurity scattering rate and
the transparency of the insulating barrier between DN and a superconductor. It
is shown that the proximity effect is suppressed by magnetic impurity
scattering in DN for any value of the barrier transparency. In low-transparent
s-wave junctions this leads to the suppression of the normalized zero-bias
conductance. In contrast to that, in high transparent junctions zero-bias
conductance is enhanced by magnetic impurity scattering. The physical origin of
this effect is discussed. For the d-wave junctions, the dependence on the
misorientation angle between the interface normal and the crystal axis
of a superconductor is studied. The zero-bias conductance peak is suppressed by
the magnetic impurity scattering only for low transparent junctions with
. In other cases the conductance of the d-wave junctions does
not depend on the magnetic impurity scattering due to strong suppression of the
proximity effect by the midgap Andreev resonant states.Comment: 11 pages, 13 figures;d-wave case adde
Electron transport in a ferromagnet-superconductor junction on graphene
In a usual ferromagnet connected with a superconductor, the exchange potential suppresses the superconducting pairing correlation. We show that this common knowledge does not hold in a ferromagnetsuperconductor junction on a graphene. When the chemical potential of a graphene is close to the conical point of energy dispersion, the exchange potential rather assists the charge transport through a junction interface. The loose-bottomed electric structure causes this unusual effec
Level Truncated Tachyon Potential in Various Gauges
New gauge fixing condition with single gauge parameter proposed by the
authors is applied to the level truncated analysis of tachyon condensation in
cubic open string field theory. It is found that the only one real non-trivial
extremum persists to appear in the well-defined region of the gauge parameter,
while the other solutions are turned out to be gauge-artifacts. Contrary to the
previously known pathology in the Feynman-Siegel gauge, tachyon potential is
remarkably smooth enough around Landau-type gauge.Comment: 13 pages, 5 figures. For associated movie files, see
http://hep1.c.u-tokyo.ac.jp/~kato/sft
Conductance Spectroscopy of Spin-triplet Superconductors
We propose a novel experiment to identify the symmetry of superconductivity
on the basis of theoretical results for differential conductance of a normal
metal connected to a superconductor. The proximity effect from the
superconductor modifies the conductance of the remote current depending
remarkably on the pairing symmetry: spin-singlet or spin-triplet. The clear-cut
difference in the conductance is explained by symmetry of Cooper pairs in a
normal metal with respect to frequency. In the spin-triplet case, the anomalous
transport is realized due to an odd-frequency symmetry of Cooper pairs.Comment: 4pages, 3 figures embedde
- âŠ