Charge transport in the diffusive normal metal (DN) / insulator / s- and d-wave superconductor junctions is studied in the presence of magnetic
impurities in DN in the framework of the quasiclassical Usadel equations with
the generalized boundary conditions. The cases of s- and d-wave
superconducting electrodes are considered. The junction conductance is
calculated as a function of a bias voltage for various parameters of the DN
metal: resistivity, Thouless energy, the magnetic impurity scattering rate and
the transparency of the insulating barrier between DN and a superconductor. It
is shown that the proximity effect is suppressed by magnetic impurity
scattering in DN for any value of the barrier transparency. In low-transparent
s-wave junctions this leads to the suppression of the normalized zero-bias
conductance. In contrast to that, in high transparent junctions zero-bias
conductance is enhanced by magnetic impurity scattering. The physical origin of
this effect is discussed. For the d-wave junctions, the dependence on the
misorientation angle α between the interface normal and the crystal axis
of a superconductor is studied. The zero-bias conductance peak is suppressed by
the magnetic impurity scattering only for low transparent junctions with
α∼0. In other cases the conductance of the d-wave junctions does
not depend on the magnetic impurity scattering due to strong suppression of the
proximity effect by the midgap Andreev resonant states.Comment: 11 pages, 13 figures;d-wave case adde