664 research outputs found
Do we need high temporal resolution modelling of exposure in urban areas? A test case
Roadside concentrations of harmful pollutants such as NOx are highly variable in both space and time. This is rarely considered when assessing pedestrian and cyclist exposures. We aim to fully describe the spatio-temporal variability of exposures of pedestrians and cyclists travelling along a road at high resolution. We evaluate the value added of high spatio-temporal resolution compared to high spatial resolution only. We also compare high resolution vehicle emissions modelling to using a constant volume source. We highlight conditions of peak exposures, and discuss implications for health impact assessments. Using the large eddy simulation code Fluidity we simulate NOx concentrations at a resolution of 2 m and 1 s along a 350 m road segment in a complex real-world street geometry including an intersection and bus stops. We then simulate pedestrian and cyclist journeys for different routes and departure times. For the high spatio-temporal method, the standard deviation in 1 s concentration experienced by pedestrians (50.9 μg.m-3) is nearly three times greater than that predicted by the high-spatial only (17.5 μg.m-3) or constant volume source (17.6 μg.m-3) methods. This exposure is characterised by low concentrations punctuated by short duration, peak exposures which elevate the mean exposure and are not captured by the other two methods. We also find that the mean exposure of cyclists on the road (31.8 μg.m-3) is significantly greater than that of cyclists on a roadside path (25.6 μg.m-3) and that of pedestrians on a sidewalk (17.6 μg.m-3). We conclude that ignoring high resolution temporal air pollution variability experienced at the breathing time scale can lead to a mischaracterization of pedestrian and cyclist exposures, and therefore also potentially the harm caused. High resolution methods reveal that peaks, and hence mean exposures, can be meaningfully reduced by avoiding hyper-local hotspots such as bus stops and junctions
Design and simulation studies of the novel beam arrival monitor pickup at Daresbury Laboratory
We present the novel beam arrival monitor pickup design currently under construction at Daresbury Laboratory, Warrington, UK. The pickup consists of four flat electrodes in a transverse gap. CST Particle Studio simulations have been undertaken for the new pickup design as well as a pickup design from DESY, which is used as a reference for comparison. Simulation results have highlighted two advantages of the new pickup design over the DESY design; the signal bandwidth is 25 GHZ, which is half that of the DESY design and the response slope is a factor of 1.6 greater. We discuss optimisation studies of the design parameters in order to maximise the response slope for bandwidths up to 50 GHz and present the final design of the pickup
Systems thinking for the transition to zero pollution
Systems approaches are vital for coordinating decision-making in the face of complex issues because they provide the whole picture view needed to avoid negative unintended consequences and to generate genuine benefits. This paper explains how systems thinking can be used to address environmental pollution and support decision-makers in finding solutions
The AWAKE Run 2 Programme and beyond
Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5–1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.info:eu-repo/semantics/publishedVersio
Phenomenological description of the gamma* p cross section at low Q2
Low Q2 photon-proton cross sections are analysed using a simple,
QCD-motivated parametrisation ,
which gives a good description of the data. The Q2 dependence of the gamma* p
cross section is discussed in terms of the partonic transverse momenta of the
hadronic state the photon fluctuates into.Comment: 14 pages, revtex, epsfig, 2 figure
EFFECT OF CSR SHIELDING IN THE COMPACT LINEAR COLLIDER
Abstract The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility
High gradient testing of an X-band crab cavity at XBOX2
CERN’s Compact linear collider (CLIC) will require crab cavities to align the bunches to provide effective head-on collisions. An X-band quasi-TM11 deflecting cavity has been designed and manufactured for testing at CERN’s Xbox-2 high power standalone test stand. The cavity is currently under test and has reached an input power level in excess of 40MW, with a measured breakdown rate of better than 10-5 breakdowns per pulse. This paper also describes surface field quantities which are important in assessing the expected BDR when designing high gradient structures
IMPROVEMENTS ON THE MODIFIED NOMARSKI INTERFEROMETER FOR MEASUREMENTS OF SUPERSONIC GAS JET DENSITY PROFILES
For supersonic gas jet based beam profile monitors such as that developed for the High Luminosity Large Hadron Collider (HL-LHC) upgrade, density profile is a key characteristic. Due to this, non-invasive diagnostics to study the jet's behaviour have been designed. A Nomarski interferometer was constructed to image jets 30 µm to 1 mm in diameter and study changes in their density. A microscope lens has been integrated into the original interferometer system to capture phase changes on a much smaller scale than previous experiments have achieved. This contribution presents the optimisation and results gained from this interferometer
- …