552 research outputs found

    Do cluster properties affect the quenching rate?

    Full text link
    The quenching rate is known to depend on galaxy stellar mass and environment, however, possible dependences on the hosting halo properties, such as mass, richness, and dynamical status, are still debated. The determination of these dependences is hampered by systematics, induced by noisy estimates of cluster mass or by the lack of control on galaxy stellar mass, which may mask existing trends or introduce fake trends. We studied a sample of local clusters (20 with 0.0214), selected independent of the galaxy properties under study, having homogeneous optical photometry and X-ray estimated properties. Using those top quality measurements of cluster mass, hence of cluster scale, richness, iron abundance, and cooling time/presence of a cool-core, we study the simultaneous dependence of quenching on these cluster properties on galaxy stellar mass M and normalised cluster-centric distance r/r200. We found that the quenching rate can be completely described by two variables only, galaxy stellar mass and normalised cluster-centric distance, and is independent of halo properties (mass, richness, iron abundance, presence of a cool-core, and central cooling time). These halo properties change, in most cases, by less than 3% the probability that a galaxy is quenched, once the mass-size (M200-r200) scaling relation is accounted for through cluster-centric distance normalisation.Comment: 12 pages, accepted for publication in A&

    Star formation and environment in clusters up to z~2.2

    Full text link
    The dependence of galaxy star formation activity on environment - especially in clusters - at high redshift is still poorly understood, as illustrated by the still limited number of z>1.4 clusters on the one hand, and by the still debated star formation-density relation at high redshift on the other hand. The zphot~2.2 JKCS041 cluster allows to probe such environmental dependence of star formation activity at an unprecedented combination of redshifts and environments. Its study permits to enlarge the knowledge of high redshift clusters and to put strong leverage on observational constraints for galaxy evolution models. We analyze deep u\astg'r'i'z'JHKs images from the CFHTLS/WIRDS surveys, which cover JKCS041 cluster field. We first estimate photometric redshifts based on multi-wavelength photometry. We then lead a careful analysis to test the presence of a Butcher-Oemler effect. We work on galaxies within 2\timesr200 and with masses >1.34\times10^11 Msun, and use two comparison clusters at z=0 and z=1 of similar mass. We estimate the radial profiles of the fraction of blue galaxies, taking into account the star aging with decreasing redshift. After confirming the high redshift nature of JKCS041, we find no evidence for a Butcher-Oemler effect between z~2.2 and z~0 for galaxies more massive than 1.34\times10^11 Msun. In the cluster center, a change greater than \Deltafblue/\Deltaz=0.16 between z~0 and z~2.2 would be easily detected. We also find that JKCS041 shows a consistent and systematic increase of the fraction of star-forming galaxies with cluster-centric distance, hence with decreasing density, for both a M>1.34\times10^11 Msun selected sample and a lower mass sample. In particular, very few (less than 15%) star-forming galaxies are found within r200/2 among high mass (M>1.34\times10^11 Msun) galaxies. Our results show that the present-day star formation-density relation is already in place at z~2.2.Comment: 10 pages, accepted for publication in Astronomy and Astrophysic

    Deep near-infrared luminosity function of a cluster of galaxies at z=0.3

    Get PDF
    The deep near-infrared luminosity function of AC118, a cluster of galaxies at z=0.3, is presented. AC118 is a bimodal cluster, as evidenced both by our near-infrared images of lensed galaxies, by public X-ray Rosat images and by the spatial distribution of bright galaxies. Taking advantage of the extension and depth of our data, which sample an almost unexplored region in the depth vs. observed area diagram, we derive the luminosity function (LF), down to the dwarf regime (M*+5), computed in several cluster portions. The overall LF, computed on a 2.66 Mpc2 areas (H_0=50 km/s/Mpc), has an intermediate slope (alpha=-1.2). However, the LF parameters depend on the surveyed cluster region: the central concentration has 2.6^{+5.1}_{-1.7} times more bright galaxies and 5.3^{+7.2}_{-2.3} times less dwarfs per typical galaxy than the outer region, which includes galaxies at an average projected distance of ~580 kpc (errors are quoted at the 99.9 % confidence level). The LF in the secondary AC118 clump is intermediate between the central and outer one. In other words, the near-infrared AC118 LF steepens going from high to low density regions. At an average clustercentric distance of ~580 kpc, the AC118 LF is statistically indistinguishable from the LF of field galaxies at similar redshift, thus suggesting that the hostile cluster environment plays a minor role in shaping the LF at large clustercentric distances, while it strongly affects the LF at higher galaxy density.Comment: ApJ, in press. The whole paper with all high resolution images is available at http://www.na.astro.it/~andreon/listapub.htm

    Size growth of red-sequence early-type galaxies in clusters in the last 10 Gyr

    Get PDF
    We carried out a photometric and structural analysis in the rest-frame VV band of a mass-selected (logM/M>10.7\log M/M_\odot >10.7) sample of red-sequence galaxies in 14 galaxy clusters, 6 of which are at z>1.45z>1.45. To this end, we reduced/analyzed about 300 orbits of multicolor images taken with the Advanced Camera for Survey and the Wide Field Camera 3 on the Hubble Space Telescope. We uniformly morphologically classified galaxies from z=0.023z=0.023 to z=1.803z=1.803, and we homogeneously derived sizes (effective radii) for the entire sample. Furthermore, our size derivation allows, and therefore is not biased by, the presence of the usual variety of morphological structures seen in early-type galaxies, such as bulges, bars, disks, isophote twists, and ellipiticy gradients. By using such a mass-selected sample, composed of 244 red-sequence early-type galaxies, we find that the log\log of the galaxy size at a fixed stellar mass, logM/M=11\log M/M_\odot= 11 has increased with time at a rate of 0.023±0.0020.023\pm0.002 dex per Gyr over the last 10 Gyr, in marked contrast with the threefold increase found in the literature for galaxies in the general field over the same period. This suggests, at face value, that secular processes should be excluded as the primary drivers of size evolution because we observed an environmental environmental dependent size growth. Using spectroscopic ages of Coma early-type galaxies we also find that recently quenched early-type galaxies are a numerically minor population not different enough in size to alter the mean size at a given mass, which implies that the progenitor bias is minor, i.e., that the size evolution measured by selecting galaxies at the redshift of observation is indistinguishable from the one that compares ancestors and descendents.Comment: A&A 593, A2 (2016) after revision of the z=1.63 cluster name, mis-typed in previous version. No result of our paper is affected by having mis-typed the cluster nam

    Is the Butcher-Oemler effect a function of the cluster redshift ?

    Get PDF
    Using PSPC {\it Rosat} data, we measure x-ray surface brightness profiles, size and luminosity of the Butcher-Oemler (BO) sample of clusters of galaxies. The cluster x-ray size, as measured by the Petrosian r_{\eta=2} radius, does not change with redshift and is independent from x-ray luminosity. On the other hand, the x-ray luminosity increases with redshift. Considering that fair samples show no-evolution, or negative luminosity evolution, we conclude that the BO sample is not formed from the same class of objects observed at different look-back times. This is in conflict with the usual interpretation of the Butcher-Oemler as an evolutionary (or redshift-dependent) effect, based on the assumption that we are comparing the same class of objects at different redshifts. Other trends present in the BO sample reflect selection criteria rather than differences in look-back time, as independently confirmed by the fact that trends loose strength when we enlarge the sample with x-ray selected sample of clusters. The variety of optical sizes and shapes of the clusters in the Butcher-Oemler sample, and the Malmquist-like bias, are the reasons for these selection effects that mimic the trends usually interpreted as changes due to evolution.Comment: ApJ, in press, scheduled on May, 10 issue. 17 pages & 11 figure

    Intrinsic scatter of caustic masses and hydrostatic bias: An observational study

    Get PDF
    All estimates of cluster mass have some intrinsic scatter and perhaps some bias with true mass even in the absence of measurement errors for example caused by cluster triaxiality and large scale structure. Knowledge of the bias and scatter values is fundamental for both cluster cosmology and astrophysics. In this paper we show that the intrinsic scatter of a mass proxy can be constrained by measurements of the gas fraction because masses with higher values of intrinsic scatter with true mass produce more scattered gas fractions. Moreover, the relative bias of two mass estimates can be constrained by comparing the mean gas fraction at the same (nominal) cluster mass. Our observational study addresses the scatter between caustic (i.e., dynamically estimated) and true masses, and the relative bias of caustic and hydrostatic masses. For these purposes, we used the X-ray Unbiased Cluster Sample, a cluster sample selected independently from the intracluster medium content with reliable masses: 34 galaxy clusters in the nearby (0.050<z<0.1350.050<z<0.135) Universe, mostly with 14<logM500/M14.514<\log M_{500}/M_\odot \lesssim 14.5, and with caustic masses. We found a 35\% scatter between caustic and true masses. Furthermore, we found that the relative bias between caustic and hydrostatic masses is small, 0.06±0.050.06\pm0.05 dex, improving upon past measurements. The small scatter found confirms our previous measurements of a highly variable amount of feedback from cluster to cluster, which is the cause of the observed large variety of core-excised X-ray luminosities and gas masses.Comment: A&A, in press, minor language changes from previous versio
    corecore