775 research outputs found

    Supergravity at the boundary of AdS supergravity

    Full text link
    We give a general analysis of AdS boundary conditions for spin-3/2 Rarita-Schwinger fields and investigate boundary conditions preserving supersymmetry for a graviton multiplet in AdS_4. Linear Rarita-Schwinger fields in AdS_d are shown to admit mixed Dirichlet-Neumann boundary conditions when their mass is in the range 0m<1/2lAdS0 \leq |m| < 1/2l_{AdS}. We also demonstrate that mixed boundary conditions are allowed for larger masses when the inner product is "renormalized" accordingly with the action. We then use the results obtained for |m| = 1/l_{AdS} to explore supersymmetric boundary conditions for N = 1 AdS_4 supergravity in which the metric and Rarita-Schwinger fields are fluctuating at the boundary. We classify boundary conditions that preserve boundary supersymmetry or superconformal symmetry. Under the AdS/CFT dictionary, Neumann boundary conditions in d=4 supergravity correspond to gauging the superconformal group of the 3-dimensional CFT describing M2-branes, while N = 1 supersymmetric mixed boundary conditions couple the CFT to N = 1 superconformal topologically massive gravity.Comment: 23 pages, RevTe

    Stability in Einstein-Scalar Gravity with a Logarithmic Branch

    Full text link
    We investigate the non-perturbative stability of asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass saturating the Breitenlohner-Freedman bound. Such "designer gravity" theories admit a large class of boundary conditions at asymptotic infinity. At this mass, the asymptotic behavior of the scalar field develops a logarithmic branch, and previous attempts at proving a minimum energy theorem failed due to a large radius divergence in the spinor charge. In this paper, we finally resolve this issue and derive a lower bound on the conserved energy. Just as for masses slightly above the BF bound, a given scalar potential can admit two possible branches of the corresponding superpotential, one analytic and one non-analytic. The key point again is that existence of the non-analytic branch is necessary for the energy bound to hold. We discuss several AdS/CFT applications of this result, including the use of double-trace deformations to induce spontaneous symmetry breaking.Comment: 31 pages, 7 figure

    A note on Kerr/CFT and free fields

    Full text link
    The near-horizon geometry of the extremal four-dimensional Kerr black hole and certain generalizations thereof has an SL(2,R) x U(1) isometry group. Excitations around this geometry can be controlled by imposing appropriate boundary conditions. For certain boundary conditions, the U(1) isometry is enhanced to a Virasoro algebra. Here, we propose a free-field construction of this Virasoro algebra.Comment: 10 pages, v2: comments and references adde

    Near Extremal Kerr Entropy from AdS_2 Quantum Gravity

    Full text link
    We analyze the asymptotic symmetries of near extremal Kerr black holes in four dimensions using the AdS_2/CFT_1 correspondence. We find a Virasoro algebra with central charge c_R=12J that is independent from the Virasoro algebra (with the same central charge) that acts on the degenerate ground state. The energy of the excitations is computed as well, and we can use Cardy's formula to determine the near extremal entropy. Our result is consistent with the Bekenstein-Hawking area law for near extremal Kerr black holes.Comment: 28 pages. v2: references added, typos correcte

    A tale of two superpotentials: Stability and Instability in Designer Gravity

    Get PDF
    We investigate the stability of asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound. The boundary conditions in these ``designer gravity'' theories are defined in terms of an arbitrary function W. Previous work had suggested that the energy in designer gravity is bounded below if i) W has a global minimum and ii) the scalar potential admits a superpotential P. More recently, however, certain solutions were found (numerically) to violate the proposed energy bound. We resolve the discrepancy by observing that a given scalar potential can admit two possible branches of the corresponding superpotential, P_{\pm}. When there is a P_- branch, we rigorously prove a lower bound on the energy; the P_+ branch alone is not sufficient. Our numerical investigations i) confirm this picture, ii) confirm other critical aspects of the (complicated) proofs, and iii) suggest that the existence of P_- may in fact be necessary (as well as sufficient) for the energy of a designer gravity theory to be bounded below

    Particle dynamics near extreme Kerr throat and supersymmetry

    Full text link
    The extreme Kerr throat solution is believed to be non-supersymmetric. However, its isometry group SO(2,1) x U(1) matches precisely the bosonic subgroup of N=2 superconformal group in one dimension. In this paper we construct N=2 supersymmetric extension of a massive particle moving near the horizon of the extreme Kerr black hole. Bosonic conserved charges are related to Killing vectors in a conventional way. Geometric interpretation of supersymmetry charges remains a challenge.Comment: V2: 10 pages; discussion in sect. 4 and 5 extended, acknowledgements and references adde

    On the CFT duals for near-extremal black holes

    Full text link
    We consider Kerr-Newman-AdS-dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U(1)_L x U(1)_R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well defined and non-vanishing and to yield central charges c_L\neq0 and c_R=0. The Cardy formula subsequently reproduces the Bekenstein-Hawking entropy of the black hole. This suggests that the near-extremal Kerr-Newman-AdS-dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.Comment: 11 page

    Multitrace deformations, Gamow states, and Stability of AdS/CFT

    Full text link
    We analyze the effect of multitrace deformations in conformal field theories at leading order in a large N approximation. These theories admit a description in terms of a weakly coupled gravity dual. We show how the deformations can be mapped into boundary terms of the gravity theory and how to reproduce the RG equations found in field theory. In the case of doubletrace deformations, and for bulk scalars with masses in the range d2/4<m2<d2/4+1-d^2/4<m^2<-d^2/4+1, the deformed theory flows between two fixed points of the renormalization group, manifesting a resonant behavior at the scale characterizing the transition between the two CFT's. On the gravity side the resonance is mapped into an IR non-normalizable mode (Gamow state) whose overlap with the UV region increases as the dual operator approaches the free field limit. We argue that this resonant behavior is a generic property of large N theories in the conformal window, and associate it to a remnant of the Nambu-Goldstone mode of dilatation invariance. We emphasize the role of nonminimal couplings to gravity and establish a stability theorem for scalar/gravity systems with AdS boundary conditions in the presence of arbitrary boundary potentials and nonminimal coupling.Comment: 14 pages, references added, introduction change

    No Dynamics in the Extremal Kerr Throat

    Full text link
    Motivated by the Kerr/CFT conjecture, we explore solutions of vacuum general relativity whose asymptotic behavior agrees with that of the extremal Kerr throat, sometimes called the Near-Horizon Extreme Kerr (NHEK) geometry. We argue that all such solutions are diffeomorphic to the NHEK geometry itself. The logic proceeds in two steps. We first argue that certain charges must vanish at all times for any solution with NHEK asymptotics. We then analyze these charges in detail for linearized solutions. Though one can choose the relevant charges to vanish at any initial time, these charges are not conserved. As a result, requiring the charges to vanish at all times is a much stronger condition. We argue that all solutions satisfying this condition are diffeomorphic to the NHEK metric.Comment: 42 pages, 3 figures. v3: minor clarifications and correction

    Metaphors are physical and abstract: ERPs to metaphorically modified nouns resemble ERPs to abstract language

    Get PDF
    Metaphorical expressions very often involve words referring to physical entities and experiences. Yet, figures of speech such as metaphors are not intended to be understood literally, word-by-word. We used event-related brain potentials (ERPs) to determine whether metaphorical expressions are processed more like physical or more like abstract expressions. To this end, novel adjective-noun word pairs were presented visually in three conditions: (1) Physical, easy to experience with the senses (e.g., printed schedule); (2) Abstract, difficult to experience with the senses (e.g., conditional schedule); and (3) novel Metaphorical, expressions with a physical adjective, but a figurative meaning (e.g., thin schedule). We replicated the N400 lexical concreteness effect for concrete versus abstract adjectives. In order to increase the sensitivity of the concreteness manipulation on the expressions, we divided each condition into high and low groups according to rated concreteness. Mirroring the adjective result, we observed a N400 concreteness effect at the noun for physical expressions with high concreteness ratings versus abstract expressions with low concreteness ratings, even though the nouns per se did not differ in lexical concreteness. Paradoxically, the N400 to nouns in the metaphorical expressions was indistinguishable from that to nouns in the literal abstract expressions, but only for the more concrete subgroup of metaphors; the N400 to the less concrete subgroup of metaphors patterned with that to nouns in the literal concrete expressions. In sum, we not only find evidence for conceptual concreteness separable from lexical concreteness but also that the processing of metaphorical expressions is not driven strictly by either lexical or conceptual concreteness
    corecore