1,094 research outputs found
Applications of DFT to the theory of twentieth-century harmony
Music theorists have only recently, following groundbreaking work by Quinn, recognized the potential for the DFT on pcsets, initially proposed by Lewin, to serve as the foundation of a theory of harmony for the twentieth century. This paper investigates pcset “arithmetic” – subset structure, transpositional combination, and interval content – through the lens of the DFT. It discusses relationships between interval classes and DFT magnitudes, considers special properties of dyads, pcset products, and generated collections, and suggest methods of using the DFT in analysis, including interpreting DFT magnitudes, using phase spaces to understand subset structure, and interpreting the DFT of Lewin’s interval function. Webern’s op. 5/4 and Bartok’s String Quartet 4, iv, are discussed.Accepted manuscrip
Quantum Cluster Variables via Serre Polynomials
For skew-symmetric acyclic quantum cluster algebras, we express the quantum
-polynomials and the quantum cluster monomials in terms of Serre polynomials
of quiver Grassmannians of rigid modules. As byproducts, we obtain the
existence of counting polynomials for these varieties and the positivity
conjecture with respect to acyclic seeds. These results complete previous work
by Caldero and Reineke and confirm a recent conjecture by Rupel.Comment: minor corrections, reference added, example 4.3 added, 38 page
Decontextualizing contextual inversion
Contextual inversion, introduced as an analytical tool by David Lewin, is a concept of wide reach and value in music theory and analysis, at the root of neo-Riemannian theory as well as serial theory, and useful for a range of analytical applications. A shortcoming of contextual inversion as it is currently understood, however, is, as implied by the name, that the transformation has to be defined anew for each application. This is potentially a virtue, requiring the analyst to invest the transformational system with meaning in order to construct it in the first place. However, there are certainly instances where new transformational systems are continually redefined for essentially the same purposes. This paper explores some of the most common theoretical bases for contextual inversion groups and considers possible definitions of inversion operators that can apply across set class types, effectively decontextualizing contextual inversions.Accepted manuscrip
Un modèle pluie-débit pour l'aide à la quantification des transferts de pesticides dans un petit bassin versant viticole
Spectroscopy of the a^3\Sigma_u^+ state and the coupling to the X^1\Sigma_g^+ state of K_2
We report on high resolution Fourier-transform spectroscopy of fluorescence
to the a^3\Sigma_u^+ state excited by two-photon or two-step excitation from
the X^1\Sigma_g^+ state to the 2^3\Pi_g state in the molecule K_2. These
spectroscopic data are combined with recent results of Feshbach resonances and
two-color photoassociation spectra for deriving the potential curves of
X^1\Sigma_g^+ and a^3\Sigma_u^+ up to the asymptote. The precise relative
position of the triplet levels with respect of the singlet levels was achieved
by including the excitation energies from the X^1\Sigma_g^+ state to the
2^3\Pi_g state and down to the a^3\Sigma_u^+ state in the simultaneous fit of
both potentials. The derived precise potential curves allow for reliable
modeling of cold collisions of pairs of potassium atoms in their ^2S ground
state
Ab initio calculation of the KRb dipole moments
The relativistic configuration interaction valence bond method has been used
to calculate permanent and transition electric dipole moments of the KRb
heteronuclear molecule as a function of internuclear separation. The permanent
dipole moment of the ground state potential is found to be
0.30(2) at the equilibrium internuclear separation with excess negative
charge on the potassium atom. For the potential the dipole moment
is an order of magnitude smaller (1 Cm) In addition, we
calculate transition dipole moments between the two ground-state and
excited-state potentials that dissociate to the K(4s)+Rb(5p) limits. Using this
data we propose a way to produce singlet KRb molecules by a
two-photon Raman process starting from an ultracold mixture of doubly
spin-polarized ground state K and Rb atoms. This Raman process is only allowed
due to relativistic spin-orbit couplings and the absence of gerade/ungerade
selection rules in heteronuclear dimers.Comment: 16 pages, 7 figure
Global analysis of data on the spin-orbit coupled and states of Cs2
We present experimentally derived potential curves and spin-orbit interaction
functions for the strongly perturbed and
states of the cesium dimer. The results are based on data from several sources.
Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used
some time ago in the Laboratoire Aim\'{e} Cotton primarily to study the state. More recent work at Tsinghua University provides
information from moderate resolution spectroscopy on the lowest levels of the
states as well as additional high resolution data. From
Innsbruck University, we have precision data obtained with cold Cs
molecules. Recent data from Temple University was obtained using the
optical-optical double resonance polarization spectroscopy technique, and
finally, a group at the University of Latvia has added additional LIF FTS data.
In the Hamiltonian matrix, we have used analytic potentials (the Expanded Morse
Oscillator form) with both finite-difference (FD) coupled-channels and discrete
variable representation (DVR) calculations of the term values. Fitted diagonal
and off-diagonal spin-orbit functions are obtained and compared with {\it ab
initio} results from Temple and Moscow State universities
High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers
Van der Waals coefficients for the heteronuclear alkali-metal dimers of Li,
Na, K, Rb, Cs, and Fr are calculated using relativistic ab initio methods
augmented by high-precision experimental data. We argue that the uncertainties
in the coefficients are unlikely to exceed about 1%.Comment: 11 pages, 2 figs, graphicx.st
Theoretical model for ultracold molecule formation via adaptive feedback control
We investigate pump-dump photoassociation of ultracold molecules with
amplitude- and phase-modulated femtosecond laser pulses. For this purpose a
perturbative model for the light-matter interaction is developed and combined
with a genetic algorithm for adaptive feedback control of the laser pulse
shapes. The model is applied to the formation of 85Rb2 molecules in a
magneto-optical trap. We find for optimized pulse shapes an improvement for the
formation of ground state molecules by more than a factor of 10 compared to
unshaped pulses at the same pump-dump delay time, and by 40% compared to
unshaped pulses at the respective optimal pump-dump delay time. Since our model
yields directly the spectral amplitudes and phases of the optimized pulses, the
results are directly applicable in pulse shaping experiments
Theoretical overview of atomic parity violation. Recent developments and challenges
Recent advances in interpreting the most accurate to-date measurement of
atomic parity violation in Cs are reviewed. The inferred nuclear weak charge,
Q_W = - 72.65(28)_expt (36)_theor, agrees with the prediction of the standard
model at 1 sigma level. Further improved interpretation is limited by an
accuracy of solving basic correlation problem of atomic structure. We report on
our progress in solving this problem within the relativistic coupled-cluster
formalism. We include single-, double- and triple- electronic excitations in
the coupled-cluster expansion. Numerical results for energies, electric-dipole
matrix elements, and hyperfine-structure constants of Cs are presented.Comment: PAVI'06 proceedings + EJPA; refs + SM Qw fixe
- …
