37 research outputs found

    Palindromic Length of Words with Many Periodic Palindromes

    Full text link
    The palindromic length PL(v)\text{PL}(v) of a finite word vv is the minimal number of palindromes whose concatenation is equal to vv. In 2013, Frid, Puzynina, and Zamboni conjectured that: If ww is an infinite word and kk is an integer such that PL(u)k\text{PL}(u)\leq k for every factor uu of ww then ww is ultimately periodic. Suppose that ww is an infinite word and kk is an integer such PL(u)k\text{PL}(u)\leq k for every factor uu of ww. Let Ω(w,k)\Omega(w,k) be the set of all factors uu of ww that have more than k1uk\sqrt[k]{k^{-1}\vert u\vert} palindromic prefixes. We show that Ω(w,k)\Omega(w,k) is an infinite set and we show that for each positive integer jj there are palindromes a,ba,b and a word uΩ(w,k)u\in \Omega(w,k) such that (ab)j(ab)^j is a factor of uu and bb is nonempty. Note that (ab)j(ab)^j is a periodic word and (ab)ia(ab)^ia is a palindrome for each iji\leq j. These results justify the following question: What is the palindromic length of a concatenation of a suffix of bb and a periodic word (ab)j(ab)^j with "many" periodic palindromes? It is known that PL(uv)PL(u)PL(v)\lvert\text{PL}(uv)-\text{PL}(u)\rvert\leq \text{PL}(v), where uu and vv are nonempty words. The main result of our article shows that if a,ba,b are palindromes, bb is nonempty, uu is a nonempty suffix of bb, ab\vert ab\vert is the minimal period of abaaba, and jj is a positive integer with j3PL(u)j\geq3\text{PL}(u) then PL(u(ab)j)PL(u)0\text{PL}(u(ab)^j)-\text{PL}(u)\geq 0

    On Pansiot Words Avoiding 3-Repetitions

    Get PDF
    The recently confirmed Dejean's conjecture about the threshold between avoidable and unavoidable powers of words gave rise to interesting and challenging problems on the structure and growth of threshold words. Over any finite alphabet with k >= 5 letters, Pansiot words avoiding 3-repetitions form a regular language, which is a rather small superset of the set of all threshold words. Using cylindric and 2-dimensional words, we prove that, as k approaches infinity, the growth rates of complexity for these regular languages tend to the growth rate of complexity of some ternary 2-dimensional language. The numerical estimate of this growth rate is about 1.2421.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    A new proof for the decidability of D0L ultimate periodicity

    Full text link
    We give a new proof for the decidability of the D0L ultimate periodicity problem based on the decidability of p-periodicity of morphic words adapted to the approach of Harju and Linna.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Combinatorics on words in information security: Unavoidable regularities in the construction of multicollision attacks on iterated hash functions

    Full text link
    Classically in combinatorics on words one studies unavoidable regularities that appear in sufficiently long strings of symbols over a fixed size alphabet. In this paper we take another viewpoint and focus on combinatorial properties of long words in which the number of occurrences of any symbol is restritced by a fixed constant. We then demonstrate the connection of these properties to constructing multicollision attacks on so called generalized iterated hash functions.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Unambiguous 1-Uniform Morphisms

    Get PDF
    A morphism h is unambiguous with respect to a word w if there is no other morphism g that maps w to the same image as h. In the present paper we study the question of whether, for any given word, there exists an unambiguous 1-uniform morphism, i.e., a morphism that maps every letter in the word to an image of length 1.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    The Critical Exponent is Computable for Automatic Sequences

    Full text link
    The critical exponent of an infinite word is defined to be the supremum of the exponent of each of its factors. For k-automatic sequences, we show that this critical exponent is always either a rational number or infinite, and its value is computable. Our results also apply to variants of the critical exponent, such as the initial critical exponent of Berthe, Holton, and Zamboni and the Diophantine exponent of Adamczewski and Bugeaud. Our work generalizes or recovers previous results of Krieger and others, and is applicable to other situations; e.g., the computation of the optimal recurrence constant for a linearly recurrent k-automatic sequence.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Permutation complexity of the fixed points of some uniform binary morphisms

    Full text link
    An infinite permutation is a linear order on the set N. We study the properties of infinite permutations generated by fixed points of some uniform binary morphisms, and find the formula for their complexity.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Infinite permutations vs. infinite words

    Full text link
    I am going to compare well-known properties of infinite words with those of infinite permutations, a new object studied since middle 2000s. Basically, it was Sergey Avgustinovich who invented this notion, although in an early study by Davis et al. permutations appear in a very similar framework as early as in 1977. I am going to tell about periodicity of permutations, their complexity according to several definitions and their automatic properties, that is, about usual parameters of words, now extended to permutations and behaving sometimes similarly to those for words, sometimes not. Another series of results concerns permutations generated by infinite words and their properties. Although this direction of research is young, many people, including two other speakers of this meeting, have participated in it, and I believe that several more topics for further study are really promising.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Monoids and Maximal Codes

    Get PDF
    In recent years codes that are not Uniquely Decipherable (UD) are been studied partitioning them in classes that localize the ambiguities of the code. A natural question is how we can extend the notion of maximality to codes that are not UD. In this paper we give an answer to this question. To do this we introduce a partial order in the set of submonoids of a monoid showing the existence, in this poset, of maximal elements that we call full monoids. Then a set of generators of a full monoid is, by definition, a maximal code. We show how this definition extends, in a natural way, the existing definition concerning UD codes and we find a characteristic property of a monoid generated by a maximal UD code.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
    corecore