29 research outputs found
Challenges for Efficient Query Evaluation on Structured Probabilistic Data
Query answering over probabilistic data is an important task but is generally
intractable. However, a new approach for this problem has recently been
proposed, based on structural decompositions of input databases, following,
e.g., tree decompositions. This paper presents a vision for a database
management system for probabilistic data built following this structural
approach. We review our existing and ongoing work on this topic and highlight
many theoretical and practical challenges that remain to be addressed.Comment: 9 pages, 1 figure, 23 references. Accepted for publication at SUM
201
Structurally Tractable Uncertain Data
Many data management applications must deal with data which is uncertain,
incomplete, or noisy. However, on existing uncertain data representations, we
cannot tractably perform the important query evaluation tasks of determining
query possibility, certainty, or probability: these problems are hard on
arbitrary uncertain input instances. We thus ask whether we could restrict the
structure of uncertain data so as to guarantee the tractability of exact query
evaluation. We present our tractability results for tree and tree-like
uncertain data, and a vision for probabilistic rule reasoning. We also study
uncertainty about order, proposing a suitable representation, and study
uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium
201
ProSA - Using the CHASE for Provenance Management
Collecting, storing, tracking, and archiving scientific data is the main task of research data management, being the basis for scientific evaluations. In addition to the evaluation (a complex query in the case of structured databases) and the result itself, the important part of the original database used has also to be archived. To ensure reproducible and replicable research, the evaluation queries can be processed again at a later point in time in order to reproduce the result. Being able to calculate the origin of an evaluation is the main problem in provenance management, particularly in why and how data provenance. We are developing a tool called ProSA which combines data provenance and schema/data evolution using the CHASE for the different database transformations needed. Besides describing the main ideas of ProSA, another focus of this paper is the concrete use of our CHASE tool ChaTEAU for invertible query evaluation
GrailQuest & HERMES: Hunting for Gravitational Wave Electromagnetic Counterparts and Probing Space-Time Quantum Foam
Within Quantum Gravity theories, different models for space-time quantisation predict an energy dependent speed for photons. Although the predicted discrepancies are minuscule, GRB, occurring at cosmological distances, could be used to detect this signature of space-time granularity with a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of high signal-to-noise impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of GW. A pathfinder of GrailQuest is already under development through the HERMES project: a fleet of six 3U cube-sats to be launched by 2021/22
Finite open-world query answering with number restrictions
Open-world query answering is the problem of deciding, given a set of facts, conjunction of constraints, and query, whether the facts and constraints imply the query. This amounts to reasoning over all instances that include the facts and satisfy the constraints. We study finite open-world query answering (FQA), which assumes that the underlying world is finite and thus only considers the finite completions of the instance. The major known decidable cases of FQA derive from the following: the guarded fragment of first-order logic, which can express referential constraints (data in one place points to data in another) but cannot express number restrictions such as functional dependencies; and the guarded fragment with number restrictions but on a signature of arity only two. In this article, we give the first decidability results for FQA that combine both referential constraints and number restrictions for arbitrary signatures: We show that, for unary inclusion dependencies and functional dependencies, the finiteness assumption of FQA can be lifted up to taking the finite implication closure of the dependencies. Our result relies on new techniques to construct finite universal models of such constraints for any bound on the maximal query size
A dichotomy for homomorphism−closed queries on probabilistic graphs
We study the problem of probabilistic query evaluation (PQE) over probabilistic graphs, namely, tuple-independent probabilistic databases (TIDs) on signatures of arity two. Our focus is the class of queries that is closed under homomorphisms, or equivalently, the infinite unions of conjunctive queries, denoted UCQ∞. Our main result states that all unbounded queries in UCQ∞ are #P-hard for PQE. As bounded queries in UCQ∞ are already classified by the dichotomy of Dalvi and Suciu [Dalvi and Suciu, 2012], our results and theirs imply a complete dichotomy on PQE for UCQ∞ queries over probabilistic graphs. This dichotomy covers in particular all fragments in UCQ∞ such as negation-free (disjunctive) Datalog, regular path queries, and a large class of ontology-mediated queries on arity-two signatures. Our result is shown by reducing from counting the valuations of positive partitioned 2-DNF formulae (#PP2DNF) for some queries, or from the source-to-target reliability problem in an undirected graph (#U-ST-CON) for other queries, depending on properties of minimal models