877 research outputs found

    Neutron diffraction study of lunar materials Final report

    Get PDF
    Apollo 12 lunar samples studied with neutron diffraction at room and cryogenic temperature

    Applications of Commutator-Type Operators to pp-Groups

    Full text link
    For a p-group G admitting an automorphism ϕ\phi of order pnp^n with exactly pmp^m fixed points such that ϕpn1\phi^{p^{n-1}} has exactly pkp^k fixed points, we prove that G has a fully-invariant subgroup of m-bounded nilpotency class with (p,n,m,k)(p,n,m,k)-bounded index in G. We also establish its analogue for Lie p-rings. The proofs make use of the theory of commutator-type operators.Comment: 11 page

    LDA+DMFT computation of the electronic spectrum of NiO

    Full text link
    The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed by using the local density approximation plus dynamical mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian obtained within the local density approximation (LDA) is expressed in Wannier functions basis, with only the five anti-bonding bands with mainly Ni 3d character taken into account. Complementing it by local Coulomb interactions one arrives at a material-specific many-body Hamiltonian which is solved by DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating gap in NiO is found to be a result of the strong electronic correlations in the paramagnetic state. In the vicinity of the gap region, the shape of the electronic spectrum calculated in this way is in good agreement with the experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy results of Sawatzky and Allen. The value of the local magnetic moment computed in the paramagnetic phase (PM) agrees well with that measured in the antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the local magnetic moment in the PM phase are in accordance with the experimental finding that AFM long-range order has no significant influence on the electronic structure of NiO.Comment: 15 pages, 6 figures, 1 table; published versio

    Galois theory and Lubin-Tate cochains on classifying spaces

    Get PDF
    We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n , and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group C p r, the cochain extension F(BC p r +,E n ) → F(EC p r +, E n ) is not a Galois extension because it ramifies. As a consequence, it follows that the E n -theory Eilenberg-Moore spectral sequence for G and BG does not always converge to its expected target
    corecore