668 research outputs found

    Neutron diffraction study of lunar materials Final report

    Get PDF
    Apollo 12 lunar samples studied with neutron diffraction at room and cryogenic temperature

    Applications of Commutator-Type Operators to pp-Groups

    Full text link
    For a p-group G admitting an automorphism ϕ\phi of order pnp^n with exactly pmp^m fixed points such that ϕpn1\phi^{p^{n-1}} has exactly pkp^k fixed points, we prove that G has a fully-invariant subgroup of m-bounded nilpotency class with (p,n,m,k)(p,n,m,k)-bounded index in G. We also establish its analogue for Lie p-rings. The proofs make use of the theory of commutator-type operators.Comment: 11 page

    LDA+DMFT computation of the electronic spectrum of NiO

    Full text link
    The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed by using the local density approximation plus dynamical mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian obtained within the local density approximation (LDA) is expressed in Wannier functions basis, with only the five anti-bonding bands with mainly Ni 3d character taken into account. Complementing it by local Coulomb interactions one arrives at a material-specific many-body Hamiltonian which is solved by DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating gap in NiO is found to be a result of the strong electronic correlations in the paramagnetic state. In the vicinity of the gap region, the shape of the electronic spectrum calculated in this way is in good agreement with the experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy results of Sawatzky and Allen. The value of the local magnetic moment computed in the paramagnetic phase (PM) agrees well with that measured in the antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the local magnetic moment in the PM phase are in accordance with the experimental finding that AFM long-range order has no significant influence on the electronic structure of NiO.Comment: 15 pages, 6 figures, 1 table; published versio

    Analysis of single comments left for bioRxiv preprints till September 2019

    Get PDF
    While early commenting on studies is seen as one of the advantages of preprints, the type of such comments, and the people who post them, have not been systematically explored. We analysed comments posted between 21 May 2015 and 9 September 2019 for 1983 bioRxiv preprints that received only one comment on the bioRxiv website. The comment types were classified by three coders independently, with all differences resolved by consensus. Our analysis showed that 69% of comments were posted by non-authors (N = 1366), and 31% by the preprints’ authors themselves (N = 617). Twelve percent of non-author comments (N = 168) were full review reports traditionally found during journal review, while the rest most commonly contained praises (N = 577, 42%), suggestions (N = 399, 29%), or criticisms (N = 226, 17%). Authors’ comments most commonly contained publication status updates (N = 354, 57%), additional study information (N = 158, 26%), or solicited feedback for the preprints (N = 65, 11%). Our results indicate that comments posted for bioRxiv preprints may have potential benefits for both the public and the scholarly community. Further research is needed to measure the direct impact of these comments on comments made by journal peer reviewers, subsequent preprint versions or journal publications

    Quantum computer-aided design of quantum optics hardware

    Get PDF
    The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger-Horne-Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design
    corecore