285 research outputs found

    Microwave satellite remote sensing for a sustainable sea

    Get PDF
    The oceans cover roughly 2/3 of the Earth’s surface and are a fundamental ecosystem regulating climate, weather and representing a huge reservoir of biodiversity and natural resources. The preservation of the oceans is therefore not only relevant on an environmental perspective but also on an economical one. A sustainable approach is requested that cannot be simply achieved by improving technologies but calls for a shared new vision of common goods.Within such a complex and holistic problem, the role of satellite microwave remote sensing to observe marine ecosystem and to assist a sustainable development of human activities must be considered. In such a view the paper is meant. Accordingly, the key microwave sensor technologies are reviewed paying particular emphasis on those applications that can provide effective support to pursue some of the UN Sustainable Development Goals. Three meaningful sectors are showcased:oil and gas, where microwave sensors can provide continuous fine-resolution monitoring of critical infrastructures; renewable energy, where microwave satellite remote sensing allows supporting the management of offshore wind farms during both feasibility and operational stages; plastic pollution, where microwave technologies that exploit signals of opportunity offer large-scale monitoring capability to provide marine litter maps of the oceans

    Sismicità all’Etna dal 1989 al 2010: evidenze sull’evoluzione spazio-temporale dell’attività sismica

    Get PDF
    Il Monte Etna, uno dei più attivi vulcani basaltici tra i più monitorati al mondo, è sede di una notevole attività sismica e vulcanica. Esso è ubicato in Sicilia orientale in un complesso quadro geodinamico, dove le principali strutture tettoniche regionali giocano un ruolo chiave nei processi dinamici del vulcano. La sismicità dell’Etna si manifesta con un elevato rate di terremoti di bassa e moderata energia che, a volte, a causa dell’estrema superficialità della sorgente, provocano danni ai centri abitati prossimi all’area epicentrale. Il monitoraggio sistematico dell’attività sismica etnea è effettuato sin dal 1989, mediante una rete sismica locale permanente che nel tempo è stata oggetto di importanti miglioramenti. La prima configurazione di rete era costituita da circa 10 stazioni analogiche con sensori a corto periodo gestita dall’Istituto Internazionale di Vulcanologia (IIV-CNR). Nel 1994, una rete sismica costituita da circa 40 stazioni (analogiche con sensori a corto periodo) fu installata sull’Etna nell’ambito del Progetto Poseidon. Nel 2001, le reti gestite dall’IIV-CNR e dal Progetto Poseidon confluirono nell’Istituto Nazionale di Geofisica e Vulcanologia (INGV); attualmente la rete sismica, costituita da circa 50 stazioni digitali equipaggiate con sismometri broadband a tre componenti, è gestita dalla Sezione di Catania dell’INGV. Nel periodo 1989-1999, il catalogo dei terremoti risulta costituito da circa 2000 eventi con soglia di completezza per magnitudo pari a 2.0; dal 1999 ad oggi contiene circa 6000 terremoti con soglia di completezza per magnitudo 1.5. La capacità di detezione della rete è migliorata nel tempo permettendo di registrare e localizzare anche gli eventi meno energetici (M≥1.0). In questo lavoro, vengono presentati i caratteri predominanti della sismicità etnea negli ultimi 20 anni, con un maggiore dettaglio della distribuzione spazio-temporale della sismicità verificatasi dal 1999. L’analisi della attività sismica rappresenta un utile strumento per l’interpretazione delle dinamiche che hanno contraddistinto numerose ed importanti eruzioni (2001, 2002-03, 2004, 2006, 2008-09). In particolare, la variazione del rilascio energetico della sismicità ha contribuito in maniera significativa ad identificare i probabili processi geodinamici legati alla ricarica del sistema magmatico del vulcano. La distribuzione spaziale della sismicità ha consentito di evidenziare inoltre l’esistenza di diverse aree sismogenetiche caratterizzate da un differente rate sismico, profondità focali e cinematica delle strutture associate. Infine, osservando le caratteristiche della sismicità nel lungo periodo, differenti settori del vulcano sono risultati maggiormente attivi in relazione ai più importanti recenti eventi eruttivi

    Multispectral pansharpening with radiative transfer-based detail-injection modeling for preserving changes in vegetation cover

    Get PDF
    Whenever vegetated areas are monitored over time, phenological changes in land cover should be decoupled from changes in acquisition conditions, like atmospheric components, Sun and satellite heights and imaging instrument. This especially holds when the multispectral (MS) bands are sharpened for spatial resolution enhancement by means of a panchromatic (Pan) image of higher resolution, a process referred to as pansharpening. In this paper, we provide evidence that pansharpening of visible/near-infrared (VNIR) bands takes advantage of a correction of the path radiance term introduced by the atmosphere, during the fusion process. This holds whenever the fusion mechanism emulates the radiative transfer model ruling the acquisition of the Earth's surface from space, that is for methods exploiting a multiplicative, or contrast-based, injection model of spatial details extracted from the panchromatic (Pan) image into the interpolated multispectral (MS) bands. The path radiance should be estimated and subtracted from each band before the product by Pan is accomplished. Both empirical and model-based estimation techniques of MS path radiances are compared within the framework of optimized algorithms. Simulations carried out on two GeoEye-1 observations of the same agricultural landscape on different dates highlight that the de-hazing of MS before fusion is beneficial to an accurate detection of seasonal changes in the scene, as measured by the normalized differential vegetation index (NDVI)

    Structural features of the Pernicana Fault (M. Etna, Sicily, Italy) inferred by high precise location of the microseismicity

    Get PDF
    The north-eastern flank of Mt. Etna is crossed by an important and active tectonic structure, the Pernicana Fault having a mean strike WNW–ESE. It links westward to the active NE Rift and seems to have an important role in controlling instability processes affecting the eastern flank of the volcano. Recent studies suggest that Pernicana Fault is very active through sinistral, oblique-slip movements and is also characterised by frequent shallow seismicity (depth < 2 km bsl) on the uphill western segment and by remarkable creeping on the downhill eastern one. The Pernicana Fault earthquakes, which can reach magnitudes up to 4.2, sometimes with coseismic surface faulting, caused severe damages to tourist resorts and villages along or close this structure. In the last years, a strong increase of seismicity, also characterized by swarms, was recorded by INGV-CT permanent local seismic network close the Pernicana Fault. A three-step procedure was applied to calculate precise hypocentre locations. In a first step, we chose to apply cross-correlation analysis, in order to easily evaluate the similarity of waveforms useful to identify earthquakes families. In a second step, we calculate probabilistic earthquake locations using the software package NONLINLOC, which includes systematic, complete grid search and global, non-linear search methods. Subsequently, we perform relative relocation of correlated event pairs using the double-difference earthquake algorithm and the program HypoDD. The double-difference algorithm minimizes the residuals between observed and calculated travel time difference for pairs of earthquakes at common stations by iteratively adjusting the vector difference between the hypocenters. We show the recognized spatial seismic clusters identifying the most active and hazarding sectors of the structure, their geometry and depth. Finally, in order to clarify the geodynamic framework of the area, we associate these results with calculated focal mechanisms for the most energetic earthquakes

    On the Trade-Off Between Enhancement of the Spatial Resolution and Noise Amplification in Conical-Scanning Microwave Radiometers

    Get PDF
    The ability to enhance the spatial resolution of measurements collected by a conical-scanning microwave radiometer (MWR) is discussed in terms of noise amplification and improvement of the spatial resolution. Simulated (and actual) brightness temperature profiles are analyzed at variance of different intrinsic spatial resolutions and adjacent beams overlapping modeling a simplified 1-D measurement configuration (MC). The actual measurements refer to Special Sensor Microwave Imager (SSM/I) data collected using the 19.35 and the 37.00 GHz channels that match the simulated configurations. The reconstruction of the brightness profile at enhanced spatial resolution is performed using an iterative gradient method which allows a fine tuning of the level of regularization. Objective metrics are introduced to quantify the enhancement of the spatial resolution and noise amplification. Numerical experiments, performed using the simplified 1-D MC, show that the regularized deconvolution results in negligible advantages when dealing with low-overlapping/fine-spatial-resolution configurations. Regularization is a mandatory step when addressing the high-overlapping/low-spatial-resolution case and the spatial resolution can be enhanced up to 2.34 with a noise amplification equal to 1.56. A more stringent requirement on the noise amplification (up to 0.6) results in an improvement of the spatial resolution up to 1.64

    Caratterizzazione sismica del sistema strutturale Pernicana - Provenzana (settore NE dell'Etna) attraverso l'utilizzo di differenti tecniche di rilocalizzazione.

    Get PDF
    Il fianco nord-orientale dell’Etna è interessato da un noto sistema strutturale denominato Pernicana-Provenzana, che ha un andamento WNW–ESE. Esso è collegato ad ovest ad un altro importante elemento strutturale, il Rift di Nord-Est, che mostra avere un ruolo importante nel controllo dei fenomeni di instabilità del fianco orientale del vulcano. La sismicità associata a questo sistema strutturale è di tipo superficiale (max 2-3 km b.s.l.) e rilevanti fenomeni di creeping sono rilevabili sul suo segmento orientale. I terremoti associati a questo sistema di faglie, che possono raggiungere magnitudo sino a 4.3, qualche volta con fenomeni di fagliazione superficiale, hanno provocato danni importanti alle principali strutture alberghiere ed ai paesi ubicati in prossimità della struttura. Nel presente lavoro, sono riportati i risultati di uno studio di dettaglio della sismicità localizzata lungo tale sistema strutturale, nel periodo 1999-2009. I terremoti registrati dalla rete sismica permanente dell’Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania, localizzati con un modello 1D utilizzando l’algoritmo Hypoellipse (Gruppo Analisi Dati Sismici, 2010), sono stati rilocalizzati applicando due differenti tecniche di localizzazione: NonLinLoc sviluppato da Lomax et al. (2000) e HypoDD proposto da Waldhauser & Ellsworth (2000). La prima metodologia è basata su un processo di ricerca globale, nello spazio 3D, dei parametri di localizzazione che possono essere ottenuti utilizzando diversi algoritmi. Il metodo HypoDD, che non prevede l’utilizzo di un modello 3D, è invece basato sull’algoritmo della doppia differenza che minimizza i residui tra le differenze dei traveltime osservati e calcolati per coppie di terremoti a stazioni comuni. L’applicazione di tali tecniche ha permesso di ottenere localizzazioni ipocentrali di migliore qualità, fondamentali per la caratterizzazione sismica della struttura. L’applicazione di queste differenti metodologie ha permesso di evidenziare che il sistema strutturale Pernicana- Provenzana risulta composto da segmenti caratterizzati da differenti rilasci di energia sismica. Sono stati individuati due cluster principali di terremoti, la cui distribuzione spaziale ha evidenziato un differente verso nell’immersione dei piani di faglia collegabili a questa sismicità. Infine, l’applicazione di tecniche di cross-correlazione delle forme d’onda registrate nel periodo indagato ha consentito di individuare “famiglie” di terremoti. L’analisi spazio – temporale delle famiglie individuate ha evidenziato per alcune di esse, una ricorrenza temporale ed ha permesso di ipotizzare che l’applicazione di un campo di stress sul sistema Pernicana-Provenzana potrebbe essere capace di attivare le stesse sorgenti sismiche in differenti periodi

    Surface and deep strain at Mt. Etna volcano (Sicily, Italy) during the 2003-2004 inflation phase

    Get PDF
    We carried out a study of the seismicity and ground deformation occurred on Mount Etna volcano after the end of 2002-2003 eruption and before the onset of 2004-2005 eruption, and recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania and by the geodetic surveys carried out in July 2003 and July 2004 on the GPS network. We provided a description of seismicity rate and main seismic swarms which occurred during the investigated period. Mostly of the earthquakes are clustered in two main clusters located on the north-eastern (E-W aligned and above the sea level) and south-eastern (NW-SE aligned and from 3 to 8 Km below the sea level) sectors of the volcano. in order to better understand the kinematic processes of the volcano, the 3D relocation were used to compute fault plane solutions and a selected dataset was inverted to determine stress and strain tensors. The focal solutions on the north-eastern sector show clear left-lateral kinematics along an E-W fault plane, in good agreement with the Pernicana fault kinematics. The focal solutions on the south-eastern sector show a main right-lateral kinematics along a NW-SE fault plane evidencing a roughly E-W oriented compression coupled with a N-S extension. Surface ground deformation affecting Mt Etna and measured by GPS surveys highlights a marked inflation during the same period, mainly visible on the western and upper sectors of the volcano; on the contrary, its eastern side shows an exceptionally strong seawards and downwards motion with displacements ranging from 5 up to 10 cm along the coastline. The 2D geodetic strain tensor distribution was calculated on a 1.5 km spaced grid, in order to detail the strain axes orientation above the entire GPS network. The results of the 2D geodetic strain calculation evidenced the very strong extension (mainly along an- ENE-WSW axis) of the summit area that was already considered as the cause of the 2004-2005 eruption; this main ENE-WSW extension continues throughout the eastern flank, but here coupled with a WNW-ESE contraction, meaning a right-lateral shear along a NW-SE oriented fault plane. The opposite deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation has to be interpreted by considering the different depths of the two signals. Seismic activity along the NW-SE alignment is, in fact, located between 3 and 8 km b.s.l. and it is then affected by the very strong additional EW compression induced by the inflating source located by inverting GPS data just westwards and at the same depth. Ground deformation measured by GPS at the surface, on the contrary, is mainly affected by the shallower dynamics of the eastern flank, fastly moving towards East that produces an opposite (extension) E-W strain. It is also meaningful, confirming the decoupling between the surface and deep strain, that all the seismicity of the south-eastern sector lies beneath the sliding plane already modeled by geodetic data for the same time interval and for the 2004-2006 period and also beneath the deeper one previously modeled during the 1993-1998 period when the eastern flank velocity was much slower

    A SO2 flux study of the Etna volcano 2020–2021 paroxysmal sequences

    Get PDF
    The persistent open-vent degassing of Mt. Etna is often punctuated by months-long paroxysmal sequences characterized by episodes of violent Strombolian to lava fountaining activity. Understanding these gas-fueled transitions from quiescence to eruption requires routine measurement of gas fluxes. Here, we report SO2 flux measurements, obtained from a permanent UV camera system, collected over a two-year-long period spanning two paroxysmal sequences of Etna’s New South East Crater (NSEC) in December 2020/April 2021 and May/October 2021. In both cases, SO2 flux increased from ≤ 3250&nbsp;Mg/day during “ordinary” activity to ≥ 4200&nbsp;Mg/day. We interpret these distinct SO2 degassing regimes in light of seismic and thermal observations and drawing on numerical simulations of sulfur degassing constrained by parental melt sulfur contents in Etna’s hawaiites. We find that initiation of a paroxysmal sequence results from an approximate doubling of the time-averaged rate of magma supply (and degassing) above the sulfur exsolution level (∼150&nbsp;MPa pressure), to &gt;4&nbsp;m3/s. This corroborates recent models that argue for the triggering of paroxysmal sequences by escalating supply of volatile-rich magma to a reservoir ∼3–4&nbsp;km below the summit region. The non-stationary nature of magma flow and volcanic degassing we identify highlights the need for sustained surveillance to characterize long-term atmospheric budgets of volcanic volatiles

    Guided Deep Decoder: Unsupervised Image Pair Fusion

    Get PDF
    The fusion of input and guidance images that have a tradeoff in their information (e.g., hyperspectral and RGB image fusion or pansharpening) can be interpreted as one general problem. However, previous studies applied a task-specific handcrafted prior and did not address the problems with a unified approach. To address this limitation, in this study, we propose a guided deep decoder network as a general prior. The proposed network is composed of an encoder-decoder network that exploits multi-scale features of a guidance image and a deep decoder network that generates an output image. The two networks are connected by feature refinement units to embed the multi-scale features of the guidance image into the deep decoder network. The proposed network allows the network parameters to be optimized in an unsupervised way without training data. Our results show that the proposed network can achieve state-of-the-art performance in various image fusion problems.Comment: ECCV 202
    corecore