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Abstract— The ability to enhance the spatial resolution of mea-
surements collected by a conical-scanning microwave radiome-
ter (MWR) is discussed in terms of noise amplification and
improvement of the spatial resolution. Simulated (and actual)
brightness temperature profiles are analyzed at variance of differ-
ent intrinsic spatial resolutions and adjacent beams overlapping
modeling a simplified 1-D measurement configuration (MC).
The actual measurements refer to Special Sensor Microwave
Imager (SSM/I) data collected using the 19.35 and the 37.00 GHz
channels that match the simulated configurations. The recon-
struction of the brightness profile at enhanced spatial resolution
is performed using an iterative gradient method which allows a
fine tuning of the level of regularization. Objective metrics are
introduced to quantify the enhancement of the spatial resolution
and noise amplification. Numerical experiments, performed using
the simplified 1-D MC, show that the regularized deconvolu-
tion results in negligible advantages when dealing with low-
overlapping/fine-spatial-resolution configurations. Regularization
is a mandatory step when addressing the high-overlapping/low-
spatial-resolution case and the spatial resolution can be enhanced
up to 2.34 with a noise amplification equal to 1.56. A more
stringent requirement on the noise amplification (up to 0.6)
results in an improvement of the spatial resolution up to 1.64.

Index Terms— Conical scan, deconvolution, inverse problem,
microwave radiometer (MWR), multi-channel data fusion, reso-
lution enhancement.

I. INTRODUCTION

M ICROWAVE radiometers (MWRs) for earth observa-
tion (EO) are sensors that measure the thermal emis-

sion of the earth [1]. In a conventional scanning radiometer,
a rotating antenna scans the scene, providing an output as
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function of the scan angle. The measured power depends
on the system’s parameters (e.g., receiver gain and noise
figure, noise bandwith, antenna pattern, etc.), the apparent
brightness temperature TB , and the brightness temperature
coming from different directions. Assuming a well-calibrated
measurement [2], the t th radiometer measurement can be
written as [3]

bt =
∫

�

A(ρ)TB(ρ)dρ (1)

where ρ is the integration variable spanning the spatial domain
� and A(·) is the measurement response function (MRF) [2] of
the MWR, i.e., a smooth function that weights the brightness
temperature TB(ρ) with the antenna pattern. However, since
the signal received by the MWR is integrated over a short
period of time to reduce the measurement variance, and
because of the rotation of the scanning antenna during the
integration period, A(·) is actually a smeared version of the
projected antenna pattern [2], [4]–[6]. MWR observations
are typically provided into two formats: swath data (that
preserve the native scan geometry) and gridded data (that are
organized into an image format with annotated geolocation
information) [7]. There is an increasing interest toward gridded
products since they allow observing the time variability of
geophysical parameters at fixed locations [8]–[11]. Gridded
products are obtained by swath-based measurements using
interpolation methods that call for a trade-off between noise
amplification and improved spatial resolution. The simplest
approach consists of using interpolation schemes that result
in low-noise, and low-resolution gridded products [12]–[14].
However, there is a growing interest toward finer spatial
resolution products for new regional-scale MWR applications.
Within this context, methods to grid radiometer products on
a spatial scale finer than the −3 dB area of the radiometer
MRF have been proposed in the literature. Those approaches,
which are basically antenna pattern deconvolution methods,
enhance the spatial resolution of the radiometer measurements
by solving a linear inverse problem [15]. Several algorithms
have been proposed that are based on either direct inversion
of the linear ill-conditioned problem [4], [5], [16] or using
iterative methods [5], [17]–[20]. The latter are to be preferred
when addressing large-scale problems such as the one resulting
from the enhancement of the spatial resolution of MWR
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measurements [18]. The achieved spatial resolution depends
on the MRF, and the reconstruction method itself. In the case
of iterative regularization methods, the convergence rate can
be relatively slow and, therefore, methods to speed up this con-
vergence rate have been proposed [19], [21]. The enhancement
of the spatial resolution is limited by the overlapping of the
radiometer measurements and depends on the sampling pat-
tern. In addition, since noisier products are obtained, a trade-
off between the enhancement of the spatial resolution and
the noise amplification must be considered [22]. In [23], the
reconstruction performance of several deconvolution methods
is discussed in terms of the achieved spatial resolution, and
noise amplification by subjectively stopping the iterations in
each method. In [6], the trade-off between noise amplification
and improvement of the spatial resolution is addressed in the
context of optimally matching fields of view (FOVs) related
to difference channels operated by the Global Precipitation
Measurement (GPM) Microwave Imager (GMI) channels with
different resolutions. Numerical experiments show that decon-
volution methods can be successfully applied to enhance the
spatial resolution when the pixel spacing is by far smaller than
the size of the FOV of the channel whose resolution one is
trying to improve. This limits the reconstruction’s performance
when dealing with the 10.65 GHz GMI channel.

In this study, a theoretical framework to discuss the per-
formance of spatial resolution enhancement with respect to
the intrinsic radiometer spatial resolution, and the level of
overlapping among adjacent beams is proposed. The theo-
retical framework is based on a preconditioned version of
the gradient iterative regularization method (LW-P). It was
originally developed in [19] to speed-up the convergence rate
of the Landweber (LW) iterative method. Here it is specialized
to tune the level of regularization by a proper setting of
its parameters. These analyzes are accomplished on both
radiometer measurements, simulated using three MRFs that
mimic three conical scanning radiometer’s measurement con-
figurations (MCs), and using actual radiometer measurements
calling for different spatial resolutions, and overlapping among
adjacent beams.

The main novelties can be summarized as follows.

1) For large-scale discretized MRF, it is theoretically shown
that the coarser the spatial resolution of the MWR is, the
larger the instability of the linear system to be inverted
is. This has a direct implication on the regularizing
capabilities of the deconvolution schemes to be applied.

2) The preconditioned regularizing scheme is analyzed to
provide a better understanding of its capability to filter
high-frequency components and, therefore, to trade off
regularization, and enhancement capabilities.

3) A quantitative analysis of reconstruction’s performance
is carried out by jointly accounting for regularization,
enhancement capabilities, and noise amplification.

The remainder of the article is organized as follows. The
spectral properties of the discretized MRF, and the regu-
larization scheme that deconvolves the antenna pattern is
discussed for different MWR configurations in Section II.
Numerical experiments performed on both simulated and

actual brightness profiles are discussed in Section III. The
conclusions are drawn in Section IV.

II. THEORETICAL BACKGROUND

In this section, a simplified 1-D MRF is used to model the
MWR measurement process in (1), and to characterize the
spectral properties of the discretized MRF for three MWR
MCs calling for different footprint sizes, and degrees of
overlapping among adjacent beams. In addition, a regularizing
scheme that exploits the spectral properties of the discretized
MRF to control noise amplification in the reconstructed bright-
ness profile is also presented.

A. Spectral Analysis of the Discretized MRF

From a physical viewpoint, the enhancement of the radiome-
ter spatial resolution is possible since MWR makes multiple
observations of the same scene under different viewing angles.
Hence, coarse, but partially correlated measurements are avail-
able. A shift-invariant convolution with a Gaussian kernel is
here used to model the MWR measurement process in the
cross-track direction. Hence, the discretized version of (1)
leads to an underdetermined linear system of equations

Ax = b (2)

where b ∈ R
m and x ∈ R

n represent the m measurements
and the n points where the finer spatial resolution bright-
ness temperatures are to be reconstructed, respectively, and
A ∈ R

m×n contains the discretized MRF. The retrieval of
the brightness temperatures on the finer resolution grid is
based on a suitable methodology to invert the highly under-
determined (m � n) linear system (2). In addition, since the
system comes from an ill-posed continuous problem, i.e., the
Fredholm equation of the first kind with a smooth kernel in (1),
the linear system (2) is also ill-conditioned. This means that
the noise on the measurements significantly affects the spatial
resolution enhancement process by limiting the quality of the
reconstruction. Hence, regularizing schemes are mandatory to
reconstruct the brightness temperature profile.

From a mathematical viewpoint, the challenges when invert-
ing (2) depend on the A matrix. Hence, its spectral properties
are here analyzed. The entries of the A matrix are here
modeled as follows [21]:

Ai, j = a�ig�− j , for i = 0, . . . , m − 1 and j = 0, . . . , n − 1

(3)

where g = n/m > 1, �·� is the floor function, and the entries
of the (Gaussian kernel) vector a are given by

ak = exp
(−k2/2σ 2), for k = −n + 1, . . . , n − 1. (4)

The standard deviation σ > 0 is a parameter that depends
on the considered radiometer channel, and it is set in such a
way that the −3 dB width of the discretized MRF matches
the MWR FOV. The coarser the spatial resolution (the larger
is σ ) is and the larger the overlapping among adjacent beams
is, i.e., there is a larger the correlation between the available
measurements. To link σ to the stability of the linear system
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(2) to be inverted, a spectral analysis is carried on the A matrix
that can be considered as the leading principal (i.e., upper-
left) m × n submatrix of the square g-Toeplitz matrix T ∈
R

n×n [24], whose entries are defined as

Ti, j = a�ig�− j , for i, j = 0, . . . , n − 1. (5)

In the context of spatial resolution enhancement, n is typically
a large value, hence it can be shown [25] that the singular
values sk , for k = 1, . . . , n, of T in (5) are distributed as the
inverse Fourier transform of the continuous extension of the
Gaussian convolution kernel, that is,

sk+1 ≈ bσ exp
(−cσ 2k2

)
, for k = 0, . . . , n − 1 (6)

where the constants b, c > 0 depend only on the dimension
n. Moreover, all the m singular values of the m × n matrix
A are well approximated by the first m singular values of T,
which leads to the following estimate of its 2-norm condition
number:

μ2(A) = s1/sm ≈ exp
(
bσ 2m2

) = Cσ 2
(7)

where C = exp(bm2) > 1 does not depend on σ . This implies
that, since Cσ 2

1 > Cσ 2
2 with σ1 > σ2, for a fixed spatial

sampling [i.e., for a fixed pair (m, n)], the larger σ is, the larger
the condition number of the matrix is. It must be recalled that
the latter gives information on the stability of the associated
linear system, that is, how sensitive the solution x is to changes
or errors in the measurements data b of (2). Hence, the larger
is σ (i.e., the coarser is the spatial resolution of the MWR
channel), the larger is the conditioning number of the linear
discrete system in (2) to be inverted to retrieve the brightness
temperature on a finer spatial resolution grid.

B. Regularizing Preconditioner

According to (7), regularization is a mandatory step to
reconstruct the brightness temperature on a finer spatial res-
olution grid. In this section, we first recall the conventional
gradient-like LW regularization scheme [17], and then we
review its preconditioned version (LW-P) that was developed
in [19] to improve the convergence rate of the LW method.
Finally, the regularizing properties of the preconditioner are
here analyzed to design a regularizing scheme where the
amount of regularization can be explicitly tuned. This is
a mandatory step to provide a theoretical framework when
jointly discussing enhancement capabilities with respect to
noise amplification and regularization needed.

The LW method, also known as the gradient method with
constant step size, minimizes the least square functional

�2(x) = 1

2
�Ax − b�2 (8)

i.e., the 2-norm of the residual, by means of the following
iterative scheme:

xk = xk−1 − λ∇�2(xk−1) (9)

where λ ∈ (0, 2/�A�2) is the step-size of the iterative method.
By straightforward computation of the gradient, (9) can be
rewritten as

xk = xk−1 − λA∗(Axk−1 − b) (10)

being A∗ ∈ R
n×m the adjoint operator of A, that is, the

transpose matrix in our real case. In the noiseless case, the
iteration converges to the generalized inverse x† ∈ N(A)⊥ for
x0 = 0, or x† + x�

0 for x0 �= 0, where x�
0 is the orthogonal

projection of the initial guess x0 onto the null space N(A).
In the noisy case, the method belongs to the family of iterative
regularization algorithms, where an early stop of the iterations
acts as regularization parameter.

Iterative methods often result in a low convergence rate [3].
In [19], a LW-P method is proposed to improve the LW
convergence rate by exploiting the structured nature of the A
matrix using a preconditioner. A regularizing preconditioner is
the operator Pf [26], [27] that, applied to the linear system (2),
allows for a clustering at unity of the singular values related
to the signal subspace only. The preconditioner is a filtered
version of the well-studied Strang straightforward circulant
preconditioner [28], which is hereinafter briefly described. The
algebra of circulant matrices allows for fast, i.e., O(n log n),
matrix-vector inversion, and computation of the spectrum via
FFT. Anyway, in general, given a n × n Toeplitz matrix
T̃i, j = ai− j for i, j = 0, . . . , n − 1, the Strang circulant
preconditioner S = S(T̃) of the matrix T̃ is defined by simple
arrangements of its central elements, that is, by copying the
central diagonals of T̃ and reversing them to complete the
circulant structure as follows:

Si, j = si− j =
{

ai− j , |i − j | ≤ �n/2�
sn−(i− j), otherwise.

(11)

In [27] it was shown that a large part of the eigenvalues
of the preconditioned matrix S−1T̃ clusters at unity, that is
S−1T̃ ≈ I, since the identity matrix has all the eigenvalues
equal to 1. This property can be explained by recalling that
the central diagonals of any Toeplitz matrix correspond to
the central values of the associated convolution kernel, which
usually keep the most important information of the point
spread function (remember that convolution kernels usually
vanish far from the central points).

In this study, to ensure regularization (i.e., to obtain a
regularizing preconditioner), we require for a clustering at
unity of the spectrum of the preconditioned matrix in the
signal space only, to avoid, in the spatial enhancement process,
the amplification of the components mainly corrupted by
noise. Hence, since the n × n symmetric matrix A∗A is
approximated by the n × n symmetric matrix T̃∗T̃ = T̃2,
the regularized version of the Strang preconditioner can be
designed as follows. First, the spectral decomposition of (11)
is considered

S = S
(
T̃T

) = F diag(λ1, λ2, . . . , λn)F∗ (12)

where λi ≥ 0 are the eigenvalues corresponding to the
eigenvectors in the columns of the Fourier matrix F, since S is
a circulant matrix, and diag(v1, . . . , vn) denotes the diagonal
matrix with diagonal entries v1, . . . , vn . Then, the inverse of
the filtered preconditioner is directly computed as

P−1
f = F diag

(
fα

(
λ2

1

)
, fα

(
λ2

2

)
, . . . , fα

(
λ2

n

))
F∗. (13)

In this study, the scalar real function

fα(x) = (x + α)−1 (14)
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is considered to design the so-called “regularizing inverse,”
that is, a (family of) bounded function defined on x ≥ 0 which
approximates, for the regularization parameter α → 0, the
unbounded inverse function x−1 defined on x > 0 only.
Basically, a regularized inverse allows a “filtered” inversion.
The idea behind the use of (14) when inverting the system in
(13) is to reduce the amplification of the smallest eigenvalues
of S∗S, i.e. a phenomenon that arises when the straightfor-
wardly inverting the linear system. This way, the regularized
preconditioner P−1

f is a filtered version of the inverse of
S(T̃∗T̃), so that P−1

f T̃∗T̃ ≈ P−1
f A∗Ã fulfills the following

heuristic rule [19]:

P−1
f A∗A ≈

{
I, in the signal subspace

A∗A ≈ 0, in the noise subspace
(15)

where I is the identity matrix, so that the convergence is very
fast in the signal subspace (where the preconditioned matrix
is close to the identity, i.e., the system is already almost
resolved), while is slow in the noise subspace (where the
preconditioned matrix is vanishing). The signal subspace is
the vector subspace of the solution space R

n less sensitive
to noise amplification in the enhancement procedure, and it
is related to the large singular values of A. On the contrary,
the noise subspace is the vector subspace characterized by a
high sensitivity to noise amplification, and it is related to the
smallest (and vanishing to zero) singular values of A. It must
be recalled that, in any convolution model, the signal subspace
is the low-frequency subspace, while the noise subspace is
the high-frequency one. Indeed, the high-frequency compo-
nents are highly reduced by the convolution integral operator
(i.e., multiplied by the smallest singular values), by virtue
of the Riemann–Lebesgue lemma. To better understand the
concept of “filtered” inversion the following example can
be considered. The difference between a nonfiltered, and a
filtered preconditioner relies in the scalar real function used
in computing the inverse of (12), i.e., f (x) = x−1 for the
nonfiltered, and fα(x) = (x + α)−1 for the filtered cases,
respectively. In our case x = λ2

i where λi are the eigenvalues
of A and the square elevation is due to the term A∗ A.
Considering λ1 � λn (e.g., λn = λ1/104) and the nonfiltered
preconditioner, it can be noted that the smaller eigenvalue
is strongly amplified in the inversion [see Fig. 1(a)]. In the
filtered case, i.e., when using fα(x), the amplification effect
is strongly reduced [see Fig. 1(b)]. This is due to the fact that
the regularized inverse (11) causes a shifting of the hyperbole
in Fig. 1(a) by a factor α toward the negative x-axis, avoiding
the excessive amplification of the smaller eigenvalues. It is
worth noting that the regularized inverse (14) we used in this
study is based on the conventional Tikhonov regularization
filtering [24]. Other low-pass filtering functions can be also
applied (see the filters in [30, Sec. 3]), leading to different
regularization behaviors.

Once the spectral properties of Pf , and its filtering ability
has been discussed, the k-iteration of the LW-P can be obtained
starting from the least square preconditioned system

P−1
f A∗Ax = P−1

f A∗b (16)

Fig. 1. Sketch of the scalar real functions used in computing the inverse of
(12) for (a) nonfiltered and (b) filtered cases, respectively.

whose set of solutions coincides with the set of solutions
of the least square minimization problem of (8), because of
the invertibility of Pf . Hence, the kth iteration of the LW-P
method is very similar to (10), and reads as

xk = xk−1 − λP−1
f A∗(Axk−1 − b). (17)

III. NUMERICAL EXPERIMENTS

In this section, numerical experiments are presented and
discussed. The reconstruction problem is formulated according
to (2) where m = 64 and n = 1400 and reference is made to
a realistic 1-D MWR configuration that performs uniformly
spaced (25 km) measurements over a 1400 km swath. This
means that the brightness temperature profile is reconstructed
on a finer grid whose spacing is 1 km. Noisy measurements
b ∈ R

m are obtained through the forward problem of (2)
where the rectangular matrix A ∈ R

m×n (with m � n) is
built using a shift-invariant Gaussian-shaped function G(·).
An additive white Gaussian noise (AWGN) with a standard
deviation 1 K is considered, and different x ∈ R

n reference
scenarios are used to showcase meaningful scenarios. Note
that this simplified 1-D MWR configuration is here specialized
to the case of along-scan measurements and smearing effects
related to the relative motion of the instantaneous FOV (IFOV)
over the surface during the integration time are neglected [6].

The brightness profile x is reconstructed using the LW-P
method by a suitable choice of the α parameter in (14). This
means that α allows tuning the degree of regularization of the
gradient-like method encompassing also the conventional LW.
It must be stressed out that the α parameter can only be used
to tune the performance of LW-P, since it is present in the
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preconditioner operator in (13), and does not appear in the
LW case.

To analyze the role played by the intrinsic MWR spatial
resolution and the degree of overlapping among adjacent
beams, three measurements MCs are used.

1) MC1 refers to the low spatial resolution, and high
overlapping case, [see Fig. 2(a)]. In this case, the −3 dB
width of MRF is equal to 43 km, and the percentage
of overlapping among adjacent beams (PO) is equal
to 77%.

2) MC2 refers to an intermediate case where the −3 dB
width of the MRF is equal to 34 km and PO is equal to
65% [see Fig. 2(b)].

3) MC3 refers to the finest spatial resolution and lowest
overlapping case where the MRF calls for a 20 km width
and PO is equal to 39% [see Fig. 2(c)].

To discuss qualitatively and quantitatively the recon-
structions performance, the following objective metrics are
introduced.

1) Improvement Factor (IF): It is defined as the ratio
between the −3 dB width of the reconstructed and the
measured pulse-like functions. It can assume values in
the range [1,∞), and the larger IF is, the finer is the
spatial resolution of the reconstructed profile.

2) Peak-to-Background Ratio (PBR): It is defined as the
ratio between the brightness level measured over the
top of a pulse-like reference profile (RP) with respect
to the reconstructed brightness level value. PBR =
1 stands for perfectly reconstructed brightness level;
while PBR >1(<1) stands for overestimated (under-
estimated) reconstructions. Hence it allows quantifying
over- and under-estimation that may result from the
reconstruction of spot-like discontinuities (see Fig. 3).

3) Depth-to-Null Ratio (DNR): It is defined as the ratio
between the background brightness level measured over
the reconstructed profile and the reference one. It is
evaluated in the region enclosed by two pulse-like
functions and it aims at quantifying the ability of the
reconstruction method to recover abrupt discontinuities
with a limited over-smoothing. DNR = 1 stands for a
background perfectly reconstructed; while DNR >1(<1)
stands for over- (under-)estimation (see Fig. 3).

4) Noise Amplification: The absolute value of the root mean
square error (RMSE) between the measurement and the
reconstructed field is evaluated over a homogeneous area
to quantify the amplification of noise that comes with
the resolution enhancement process.

The first set of experiments is related to simulated noisy
measurements obtained using the three MCs depicted in Fig. 2.
Then, experiments performed using profiles extracted from
actual MWR measurements collected by the Special Sensor
Microwave Imager (SSM/I) are discussed.

A. Simulated Measurements

The first experiment consists of discussing the enhancement
of the spatial resolution by contrasting the point spreading
function in the nonenhanced and enhanced cases. On this

Fig. 2. System matrix A related to the three MCs. The G(·) functions
belonging to the ith row (restricted to the range 500–900 samples) and
centered at the nth and (n +1) samples are here shown for the cases (a) MC1,
(b) MC2, and (c) MC3.

purpose, an unrealistic RP that consists of 1-pixel Kronecker
function calling for a 106 K brightness temperature is used.
The noisy measurements (linearly interpolated on the finer-
resolution grid) are depicted together with the LW and LW-P
reconstructions in Fig. 4. The LW-P is run with a low level
of regularization, i.e., α = 5 · 10−3, and the LW case,
that is approximated by α = 5 · 10−4, is also annotated
for comparison purposes. To better visualize the outputs, the
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Fig. 3. Sketch of a hypothetical reference (continuous line) and measured
(dotted line) profile to clarify the meaning of the metrics PBD and DNR.

logarithmic (dB) scale is used. Fig. 4(a)–(c) refer to the MC
of Fig. 2(a)–(c), respectively. As expected, MC3 calls for the
finest spatial resolution; while the coarsest one is achieved
when using MC1. The reconstructions related to MC1 are
depicted in Fig. 4(a) where it can be noted that, although
both LW and LW-P improve the spatial resolution with respect
to the measurements, LW-P performs best since it results in
the brightness level closest to the RP one. To quantitatively
analyze the reconstruction’s performance, the IF metric is eval-
uated (see Table I) confirming that LW-P (1.57) outperforms
LW (1.09). This implies that a smaller level of regularization
allows a better reconstruction of spot-like discontinuities since
it reduces the over smoothing. Similar comments apply when
dealing with the MC2 case [see Fig. 4(c)]. In the MC3 case,
LW performs better than LW-P. This is likely due to the finer
resolution of MWR measurements, and the low overlapping
among adjacent beams affecting the performance of LW-P.
A deeper analysis on the three MC cases can be provided
analyzing the matrix system function A. In particular, the
singular value decomposition (SVD) is used to analyze the
A matrices associated with the three MC cases (see Fig. 5),
where the singular values are depicted using a semilog-y scale.
One can note that MC1 penalizes higher order eigenvalues;
while MC3 does not significantly affect them. The discrete
forward problem used to generate the measured profile [see
(2)] comes from a continuous Fredholm integral equation of
the first kind with a smooth kernel. Hence, we are dealing
with a low-pass measuring system that, in discrete settings,
results in an ill-determined rank system matrix A. Therefore,
its spectral analysis performed using the SVD results in a
clustering of the smaller singular values toward the origin. This
phenomenon is more pronounced in the MC1 case, while there
is a negligible clustering in the MC3 case. This means that
the MC1 scenario is the most challenging in terms of the ill-
conditioning (condition number equal to 6248) of the system
matrix. In fact, it represents a MC where a large aperture
function (i.e., a strong low-pass filter) is used. The MC3
scenario results in the best conditioned problem (condition
number equal to 2.79), since it comes from a continuous
forward problem that calls for a narrower aperture function
(i.e., a weaker low-pass filtering). Hence, regularization is a
mandatory choice in the MC1 case when dealing with the
inverse problem, while its effects are almost negligible in the
MC3 case. This justifies the behavior of LW-P that results in
an added-value with respect to LW in the MC2 cases, while
it does not improve reconstruction’s performance in MC3.

Fig. 4. Reconstruction of the 1-pixel Dirac-like delta function using both
LW and LW-P for the scenario (a) MC1, (b) MC2, and (c) MC3. The noisy
measurements, interpolated onto the finer-resolution grid, are also annotated.
It is noted that dB scale is used.

It is also worth noting that, in the MC3 case, even the LW
method does not improve significantly the conventional linear
interpolation.

The second experiment refers to two 300 K narrow (50 sam-
ples) pulse functions separated by �: 50, 20, and 10 samples
(see Fig. 6(a)–(c), respectively). The reconstructed profiles
using LW and LW-P are depicted in Fig. 7 that is arranged
in a matrix format with the rows standing for the RPs
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Fig. 5. Singular values associated with the three system functions describing
the measurements process in the scenarios MC1, MC2, and MC3. It is noted
that semiology-y scale is used.

TABLE I

IF VALUES RELATED TO THE CONFIGURATIONS MC1, MC2,
AND MC3 WHEN USING LW AND LW-P

depicted in Fig. 6(a)–(c), respectively. In this experiment, the
LW-P method is run with α = 3, while the LW method
is approximated using α = 10−2. The three columns refer
to the scenarios MC1, MC2, and MC3, respectively. In all
the panels, the measured profile interpolated onto the finer
resolution grid is also shown together with a horizontal bar
showing the brightness temperature level of the RP. Note that
dB scale is adopted. When dealing with the MC1 scenario
(see first column), although both LW and LW-P succeed in
reconstructing a profile sharper than the measured one, the
LW-P method outperforms the LW one since it results in a
reduction of the over-smoothing, and therefore, it reconstructs
sharper edges. In fact, it provides a better reconstruction of the
abrupt discontinuities in the region bounded by the two pulse
functions. To analyze the separability in an objective way, a
−3 dB threshold evaluated with respect to RP is considered
(see dotted blue line in Fig. 7). Hence, the reconstructed pulse
functions are separated when two distinguishable peaks are
above the threshold. This means that, when � = 50 (first
row) the two pulse functions are distinguishable in both the
measurements and the reconstructions; while in the � =
20 and � = 10 samples (second and third rows, respectively),
the RP cannot be separated neither in the measurements, nor
in the reconstructions. However, it can also be noted that the
LW-P method is able to provide non-negligible distinguishable
hints of signal associated with the two pulse functions in the
� = 20 case, while this is no longer true when LW is used.
Hence, LW is never able to reach the performance of LW-P.

When dealing with the MC2 case, although LW-P still
outperforms LW, the difference in their reconstructed profiles
reduces significantly if compared to the MC1 case. LW-P
allows distinguishing the two profiles correctly when � = 50

Fig. 6. Three RPs that consist of pulse functions calling for a 300 K
brightness temperature and different separations (�). (a) � = 50 samples.
(b) � = 20 samples. (c) � = 10 samples.

and � = 20; while non-negligible hints of signal belonging
to the two pulse functions can be observed in the � = 10
case. The LW method correctly distinguishes the two pulse
functions only in the � = 50 and � = 20 cases; while almost
negligible hints of signals are visible in the � = 10 case.
When dealing with the MC3 case, the intrinsic MWR spatial
resolution is finer enough to make the pulse functions well
distinguishable in the profiles measured at both � = 50 and
� = 20 cases. In fact, the reconstructions practically do not
improve the measurements when dealing with � = 50 case,
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Fig. 7. Profiles reconstructed using LW and LW-P. The rows (a), (d), and (g), (b), (e), and (h), and (c), (f), and (i) refer to the reconstructions of the RPs
depicted in Fig. 6(a)–(c), respectively. The columns (a)–(c), (d)–(f), and (g)–(i) refer to the MC1, MC2, and MC3 cases, respectively. In all the panels, the
measured profile, interpolated onto the finer-resolution grid is also shown together with horizontal bars that stand for the brightness level on the top of the
RP. The dotted blue line depicts the −3 dB threshold. It is noted that dB scale is used.

while they result in non-negligible improvements when dealing
with the � = 20 and � = 10 cases. In the � = 20 case, LW-P
results in a reconstructed profile that well-fits the RP in terms
of the brightness level on the top of the pulse functions. The
same applies also for the � = 10 case. In addition, in both
cases, LW-P outperforms LW, that results in an overestimated
brightness temperature level. When dealing with separability
of the two pulse functions, in the � = 20 case the two
RPs are distinguishable in the measurements (according to the
−3 dB threshold); while they are no longer distinguishable
in the measured profile at � = 10. The LW improves
the separability in both the � = 20 and � = 10 cases
with respect to the measured profile, and the LW-P. In the
� = 10 case, both the LW and the LW-P reconstructions
show well-distinguishable hints of signals belonging to the
two pulse functions. To deeply analyze the separability of the
two pulse functions the DNR metric is evaluated (see Table II).
Quantitative results confirm the qualitative analysis of Fig. 7.
In general, the methods improve the measured profiles in terms
of DNR. The LW-P method generally outperforms the LW.

The improvement is largest in the MC1 case when � =
50. In the MC2 and MC3 cases, the finer intrinsic MWR
spatial resolution reduces the difference between DNR values
resulting from LW and LW-P. In some cases (MC2, � = 50;
MC3, � = 20), LW outperforms LW-P. In the MC3 case, when
� = 50, the linearly interpolated measurements outperform
the reconstructed profiles in terms of DNR.

The third experiment aims at discussing the performance
of the reconstructions obtained by varying the amount of
regularization jointly using the metrics IF, noise amplification
and PBR, see Table III. The RP consists of a 300 K pulse
function of 50 samples width, see Fig. 8(a). The analysis
consists of using the LW-P with different α values that include
the one that best fits the LW behavior. The scatter plots of
Fig. 8(b) and (c) depict the reconstruction’s performance in
terms of noise amplification and IF related to the MC1 and
MC3 cases, respectively. The reconstructions obtained using
LW-P with the five filter’s values are labeled as LW-P f 1 up
to LW-P f 5 with the former one calling for a performance
very close to the LW one. The metric noise amplification
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TABLE II

DNR METRICS EVALUATED USING THE MEASUREMENTS AND THE RECONSTRUCTIONS RELATED TO THE SCENARIOS MC1, MC2,
AND MC3 THAT REFER TO THE RPS DEPICTED IN FIG. 6

Fig. 8. (a) Reconstructions of a RP that consists of a 300 K narrow (50 samples) pulse function located at the center of the profile. The 3-D scatter plots
contrast the metrics IF, noise amplification and PBR for different values of the preconditioner filter for the scenarios (b) MC1 and (c) MC3. The circles are
colored according to the PBR level.

is evaluated by averaging the absolute value of the RMSE
related to the shaded boxes depicted in Fig. 8(a). Note that
the α values shown in Fig. 8(b) and (c) are normalized to
LW-P f 1. When dealing with the MC1 case, see Fig. 8(b),
the performance of LW-P is always superior to the LW one
in terms of IF and PBR for all the α values. The largest IF
(∼1.5) and PBR (0.998) values are obtained in the LW-P
f 5 case with an α value equal to 0.005. The lowest IF and
PBR values (larger than the LW ones) are achieved in the
LW-P f 1 case (∼1.1 and 0.791, respectively) with an α value
equal to 0.5, see Table III where non-normalized α values are
listed together with the metric PBR. When dealing with the
noise amplification, the superior performance of LW-P can

be noted at the expense of a noise amplification, which is
always larger than the LW one. In particular, LW-P f 1, LW-P f 2,
and LW-P f 3 improve the IF performance with respect to LW,
while keeping the noise amplification at levels comparable
with the ones achieved by LW. When using LW-P f 4 and
LW-P f 5 the slight improvement in IF performance is achieved
at the expense of a larger increase of the noise amplification.
A fair compromise between noise amplification and resolution
enhancement is achieved in the LW-P f 3 case, with a noise
amplification ∼2 and an improvement factor IF = 1.4. Note
that the noise amplification values smaller than 1, obtained
using LW and LW-P f 1, imply that the amount of regularization
is such that there is no noise amplification. However, this
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Fig. 9. Brightness field collected by the SSM/I over the Canary islands in 1988. The first column refers to the measurement and the processing related to
the 19.35 GHz channel, while the second column refers to the 37.0 GHz channel. The brightness profile measured along the transects shown as white lines in
(a) and (b) are depicted in (c) and (d) for the 19.35 and 37.0 GHz cases, respectively. The linearly interpolated measurements and the reconstructions obtained
using both LW and LW-P are depicted in (e) and (f) for the 19.35 and 37.00 GHz case, respectively.

result is obtained at the expense of a smoother reconstruction
(IF �1). With respect to the MC3 case, see Fig. 8(c), the finer
intrinsic spatial resolution and the lower overlapping among
adjacent beams limit the performance of both LW and LW-P
that result in IF values close to the unity and a reduced noise
amplification with respect to the MC1 case, (see Table III). The
reduced noise amplification is likely due to the filtering effects
of the preconditioner. Hence, this confirms that the antenna
pattern deconvolution is not needed in the MC3 case.

B. Real Measurements

Experiments on actual measurements refer to the bright-
ness temperature profiles extracted from data collected by
the SSM/I radiometer onboard the United States Defense
Meteorological Satellite Program at an altitude of 833 km with
a nominal swath width of 1400 km. SSM/I is a multi-channel
MWR and, for the purposes of this study, measurements col-
lected in 1988 by the lowest spatial resolution channel, i.e., the
19.35 GHz channel, and the 37.00 GHz channel are considered
since they match the parameters related to MC1 and MC3,
respectively. In fact, the 19.35 GHz measurements call for an
along-scan spatial resolution of 43 km, whilst in the 37.0 GHz
case the latter is 29 km. In both the channels, the radiometer
acquires 64 uniformly spaced (25 km) measurements along
the along-scan direction.

The fourth experiment refers to radiometer measurements
collected over the Canary islands, (see Fig. 9). The figure

TABLE III

IF, NOISE AMPLIFICATION AND PBR VALUES RELATED TO THE RP OF
FIG. 8 AND OBTAINED USING LW AND LW-P. THE LATTER IS RUN

WITH DIFFERENT FILTER’S VALUES

is arranged in a matrix format, with the two columns
Fig. 9(a), (c), and (e) and (b), (d), and (f) standing for
19.35 and 37.0 GHz H-polarization channel, respectively. The
rows are related to: the brightness temperature field measured
by the SSM/I (first row), the profile measured along with
the white transect of panel Fig. 9(a) (second row), and the
reconstructions obtained using LW and LW-P together with the
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Fig. 10. Brightness field collected by the SSM/I over part of the U.K., Ireland, Northern Europe and the Scandinavian Peninsula in 1988. The first column
refers to the measurement and the processing related to the 19.35 GHz channel, while the second column refers to the 37.0 GHz channel. The brightness
profile measured along the transects [shown as white lines in (a) and (b)] over an area that includes the isle of Man are depicted in (c) and (d) for the
19.35 and 37.0 GHz cases, respectively. It is noted that the samples collected within the isle of Man are enclosed in the red circle. The linearly interpolated
measurements and the reconstructions obtained using both LW and LW-P are depicted in (e) and (f) for the 19.35 and 37.00 GHz case, respectively.

linearly interpolated measurements (third row). When dealing
with the 19.35 GHz case [see Fig. 9(a)], both LW and LW-P
provide reconstructed profiles sharper than the measurements
[see Fig. 9(e)]. The LW-P is run with α = 0.2, while the
LW is approximated by α = 0.05. The reconstructed profile
using LW-P improves the measurements in terms of both
reconstruction of the brightness temperature level of the small
islands, and in the separation among them. The reconstructed
profile using LW, although correctly follows the profile of the
small islands, results in overestimations and underestimations.
The performance of both LW-P and LW is similar when
dealing with the continental area depicted in the right-hand-
most part of the image. When dealing with the 37.00 GHz case
[see Fig. 9(f)] the two methods result in similar reconstruction
performance with LW-P calling for lower fluctuations than LW.
As far as for the simulated scenario, even in this case the
fine native SSM/I spatial resolution, and the very low level
of overlapping among adjacent beams let the reconstructed
profiles being very close to the measured one.

The fifth experiment is related to the radiometer measure-
ments collected over an area that includes part of the U.K.,
Ireland, Northern Europe, and the Scandinavian Peninsula.
Fig. 10 is arranged in a fashion similar to Fig. 9. This
experiment aims at analyzing the performance of the two
methods when reconstructing small islands. On this purpose,
a transect (dotted white line) is considered that includes the isle

of Man, [red circle in Fig. 10(c) and (d)]. The reconstructed
profiles using LW and LW-P are depicted together with the
measured profile interpolated on the finer resolution grid, see
Fig. 10(e) and (f) for the 19.35 and 37 GHz cases, respec-
tively. The LW-P is run with α = 0.2 while the LW is approx-
imated by α = 0.09. When dealing with the 19.35 GHz case
[see Fig. 10(e)], both LW and LW-P result in a reconstructed
profile sharper than the measured one although characterized
by Gibbs-related fluctuations. The LW-P reconstruction per-
forms best, since it sharpens the edges resulting in a better
reconstructed isle of Man. When dealing with the 37.00 GHz
case [see Fig. 10(f)] the two methods result in almost similar
performance that does not improve significantly the measured
profile. However, LW-P results in a better reconstructed island
with respect to LW. To quantitatively discuss the reconstruc-
tion’s performance, the metrics IF (referred to the isle of Man)
and noise amplification are used. Note that since in this case
the RP is not available, the metric PBR cannot be evaluated.
In addition, to evaluate IF a threshold equal to −1 dB is used
since the brightness temperature level is not strong enough to
allow using a threshold equal to −3 dB. Results are depicted
in Fig. 11(a) and (b) for the 19.35 and 37.00 GHz cases,
respectively, where the same format of Fig. 8 is adopted.
When dealing with the 19.35 GHz case [see Fig. 11(a)], LW-P
always outperforms LW in terms of IF with the largest IF
(2.34) being achieved with a filter equal to 0.1 (LW-P f 5).
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Fig. 11. Reconstructions related to the actual SSM/I radiometer profile depicted in Fig. 10. The measured profile interpolated onto the finer resolution grid
is depicted in the panel (a) where the shaded boxes that are used to evaluate noise amplification are also annotated. The 3-D scatter plots contrast the metrics
IF and noise amplification for different values of the preconditioner filter for (b) 19.35 GHz and (c) 37.00 GHz cases.

TABLE IV

IF, NOISE AMPLIFICATION, AND PBR VALUES RELATED TO THE RP OF

FIG. 11 AND OBTAINED USING LW AND LW-P. THE LATTER IS RUN

WITH DIFFERENT FILTER’S VALUES

The lowest IF value (1.35) is achieved with the filter value
1 (LW-P f 1) and it is slightly higher than the corresponding
LW IF value (1.24) (see Table IV). With respect to noise
amplification, it can be noted that up to LW-P f 2, the superior
performance of LW-P is not achieved at the expense of a larger

noise amplification. In particular, the latter is indeed a bit
lower than the LW case. From LW-P f 3 onward, the superior
performance of LW-P calls for a noise amplification larger
than the LW one. When dealing with the 37.00 GHz case, see
Fig. 11(b), the joint analysis of IF and noise amplification
confirms that in this case the reconstruction algorithm is
generating very noisy reconstructions at low α values. This
confirms that in this scenario (finer intrinsic spatial resolution
and low overlapping among adjacent beams) antenna pattern
deconvolution algorithms do not work properly.

IV. CONCLUSION

A study on the ability of enhancing of the spatial resolution
of conical-scan MWR brightness profiles using an iterative
regularizing antenna pattern deconvolution method that allows
tuning the level of regularization is presented. The enhance-
ment capabilities are discussed against the overlapping among
adjacent beams and the native spatial resolution using both
simulated and real radiometer measurements. In particular, a
simplified 1-D MC is here analyzed that consists of three
MRFs that resemble three conical scanning radiometer’s MCs
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which is applied to simulated and measured 1-D profiles
extracted from data collected by the SSM/I sensor.

When retrieving the brightness profile on a finer spatial
resolution grid inverting the linear ill-posed forward problem,
special attention is due to ill-conditioning of the problem
that jointly depends on intrinsic radiometer spatial resolu-
tion and the overlapping among adjacent beams. In case of
finer spatial resolution radiometer measurements calling for
a lower overlapping among adjacent beams, regularization
is not a key issue to be dealt with. When dealing with
lower-resolution measurements resulting in higher overlapping
among adjacent beams, regularization plays a key role. In this
latter case, a proper tuning of the regularization parameter
allows an application-oriented reconstruction calling for a
desired trade-off between enhanced performance and noise
amplification.

The analysis carried out by applying the simplified 1-D
MC to both synthetic and actual radiometer measurements that
resemble the SSM/I configuration shows that:

1) When dealing with the 19.35 GHz channel—i.e., the
one that best matches the simulated low-resolution high-
overlapping MC1 configuration—the improvement of
the spatial resolution can reach up to 2.34 at the expense
of a noise amplification equal to 1.56. In addition,
to reach an enhancement of 1.64 the noise amplification
is less than 0.6.

2) When dealing with the 37.0 GHz channel—i.e., the
one that best matches the simulated high-resolution
low-overlapping MC3 configuration—the improvement
of the spatial resolution is negligible and it is actu-
ally obtained at the expense of an intolerable noise
amplification.

REFERENCES

[1] F. T. Ulaby et al., Microwave Radar and Radiometric Remote Sensing.
Ann Arbor, MI, USA: Univ. Michigan Press, 2014. [Online]. Available:
https://books.google.it/books?id=y6pZngEACAAJ

[2] D. G. Long and M. J. Brodzik, “Optimum image formation for space-
borne microwave radiometer products,” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 5, pp. 2763–2779, May 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7366582/

[3] F. Lenti, F. Nunziata, C. Estatico, and M. Migliaccio, “Analysis of
reconstructions obtained solving l p -penalized minimization problems,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 4876–4886,
Sep. 2015. [Online]. Available: http://ieeexplore.ieee.org/document/
7084656/

[4] F. Lenti, F. Nunziata, M. Migliaccio, and G. Rodriguez, “Two-
dimensional TSVD to enhance the spatial resolution of radiometer data,”
IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2450–2458,
May 2014.

[5] D. G. Long and D. L. Daum, “Spatial resolution enhancement of SSM/I
data,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 2, pp. 407–417,
Mar. 1998.

[6] W. P. Grant and R. Bennartz, “Field-of-view characteristics and res-
olution matching for the global precipitation measurement (GPM)
microwave imager (GMI),” Atmos. Meas. Techn., vol. 10, no. 3,
pp. 745–758, 2017.

[7] EOSDIS. Data Processing Levels. Accessed: Jul. 21, 2021.
[Online]. Available: https://science.nasa.gov/earth-science/earth-science-
data/dataprocessing- levels-for-eosdis-data-products

[8] M. J. Brodzik, B. Billingsley, T. Haran, B. Raup, and M. H. Savoie,
“EASE-Grid 2.0: Incremental but significant improvements for earth-
gridded data sets,” ISPRS Int. J. Geo-Inf., vol. 1, no. 1, pp. 32–45,
Mar. 2012, [Online]. Available: http://www.mdpi.com/2220-9964/
1/1/32.

[9] M. Brodzik, B. Billingsley, T. Haran, B. Raup, and M. H. Savoie,
“EASE-Grid 2.0: Incremental but significant improvements for Earth-
gridded data sets,” ISPRS Int. J. Geo-Inf., vol. 3, no. 3, pp. 1154–1156,
Sep. 2014. [Online]. Available: http://www.mdpi.com/2220-9964/
3/3/1154

[10] F. Wentz, “SSM/I version-7 calibration report,” Remote Sens. Syst.,
Santa Rosa, CA, USA, Tech. Rep. RSS011012, 2013.

[11] M. J. Brodzik and D. Long, “Calibrated passive microwave daily EASE
grid 2.0 brightness temperature ESDR (CETB),” NASA, Washington,
DC, USA, Tech. Rep. NSIDC-0630, 2015.

[12] K. W. Knowles, E. J. Njoku, R. L. Armstrong, and M. J. Brodzik.
(2000). Nimbus-7 SMMR Pathfinder Daily EASE-Grid Brightness Tem-
perature. [Online]. Available: http://nsidc.org/data/nsidc-0071

[13] K. Knowles, M. Savoie, R. Armstrong, and M. J. Brodzik,
“AMSR-E/Aqua daily EASE-grid brightness temperatures,” NASA Nat.
Snow Ice Data Center Distrib. Act. Arch. Center, Version 1 (Indicate
subset used). Boulder, Colorado USA. 2006. Accessed: Jul. 28, 2021,
doi: 10.5067/XIMNXRTQVMOX.

[14] J. Maslanik and J. Stroeve. (2004). DMSP SSM/I-SSMIS Daily Polar
Gridded Brightness Temperatures, Version 4. [Online]. Available:
https://nsidc.org/data/nsidc-0001

[15] P. Hansen, Rank-Deficient and Discrete Ill-Posed Problems.
Philadelphia, PA, USA: SIAM, 1998, doi: 10.1137/1.9780898719697.

[16] M. Migliaccio and A. Gambardella, “Microwave radiometer spatial
resolution enhancement,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 5, pp. 1159–1169, May 2005.

[17] F. Lenti, F. Nunziata, C. Estatico, and M. Migliaccio,
“On the spatial resolution enhancement of microwave radiometer
data in Banach spaces,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 3, pp. 1834–1842, Mar. 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6517236/

[18] F. Lenti, F. Nunziata, C. Estatico, and M. Migliaccio, “Conjugate
gradient method in Hilbert and Banach spaces to enhance the spatial
resolution of radiometer data,” IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 1, pp. 397–406, Jan. 2016.

[19] M. Alparone, F. Nunziata, C. Estatico, and M. Migliaccio, “On the use
of preconditioners to improve the accuracy and effectiveness of iterative
methods to enhance the spatial resolution of radiometer measure-
ments,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 3, pp. 446–450,
Mar. 2021. [Online]. Available: https://ieeexplore.ieee.org/document/
9050438/

[20] M. Alparone, F. Nunziata, C. Estatico, and M. Migliaccio, “A mul-
tichannel data fusion method to enhance the spatial resolution of
microwave radiometer measurements,” IEEE Trans. Geosci. Remote
Sens., vol. 50, no. 3, pp. 2213–2221, Mar. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9134973/

[21] F. Lenti, F. Nunziata, C. Estatico, and M. Migliaccio, “Spatial
resolution enhancement of Earth observation products using an
acceleration technique for iterative methods,” IEEE Geosci. Remote
Sens. Lett., vol. 12, no. 2, pp. 269–273, Feb. 2015. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6861444

[22] D. G. Long, P. J. Hardin, and P. T. Whiting, “Resolution enhancement
of spaceborne scatterometer data,” IEEE Trans. Geosci. Remote Sens.,
vol. 31, no. 3, pp. 700–715, May 1993.

[23] D. G. Long, M. J. Brodzik, and M. A. Hardman, “Enhanced-resolution
SMAP brightness temperature image products,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 7, pp. 4151–4163, Jul. 2019.

[24] C. Estatico, E. Ngondiep, S. Serra-Capizzano, and D. Sesana,
“A note on the (regularizing) preconditioning of g-Toeplitz sequences via
g-circulants,” J. Comput. Appl. Math., vol. 236, no. 8, pp. 2090–2111,
2012. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0377042711005127

[25] C. Garoni and S. Serra-Capizzano, Generalized Locally Toeplitz
Sequences: Theory and Applications, vol. 1. Cham, Switzerland:
Springer, 2017.

[26] C. Estatico, “A class of filtering superoptimal preconditioners for highly
ill-conditioned linear systems,” BIT Numer. Math., vol. 42, no. 4,
pp. 753–778, 2002, doi: 10.1023/A:1021948319714.

[27] C. Estatico, “A classification scheme for regularizing precondi-
tioners, with application to Toeplitz systems,” Linear Algebra
Appl., vol. 397, pp. 107–131, Mar. 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002437950400446X

[28] G. Strang, “A proposal for Toeplitz matrix calculations,” Stud.
Appl. Math., vol. 74, no. 2, pp. 171–176, Apr. 1986, doi:
10.1002/sapm1986742171.

Authorized licensed use limited to: University Parthenope of Napoli. Downloaded on May 19,2022 at 07:49:16 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.5067/XIMNXRTQVMOX
http://dx.doi.org/10.1137/1.9780898719697
http://dx.doi.org/10.1023/A:1021948319714
http://dx.doi.org/10.1002/sapm1986742171


5303714 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[29] C. Estatico, “Regularization processes for real functions and ill-
posed Toeplitz problems,” in Recent Advances in Operator The-
ory and its Applications. Basel, Switzerland: Birkhäuser, 2005,
pp. 161–178.

Matteo Alparone (Member, IEEE) received the
B.Sc. and M.Sc. (summa cum laude) degrees in
physics and astrophysics from the Università La
Sapienza of Rome, Rome, Italy, in 2013 and 2016,
respectively. He is currently pursuing the Ph.D.
degree in information and communication technol-
ogy and engineering with the Università degli Studi
di Naples Parthenope, Naples, Italy.

Since 2017, he has been cooperating with the
Electromagnetics and Remote Sensing Laboratory,
Università degli Studi di Naples Parthenope, work-

ing on inverse problems and spatial resolution enhancement of microwave
radiometer data.

Ferdinando Nunziata (Senior Member, IEEE) was
born in Naples, Italy, in 1982. He received the B.Sc.
and M.Sc. degrees (summa cum laude) in telecom-
munications engineering and the Ph.D. degree in
electromagnetic fields from the Università degli
Studi di Naples Parthenope, Naples, in 2003, 2005,
and 2008, respectively.

Since 2018, he has been Associate Professor in
electromagnetic fields with the Università degli Studi
di Naples Parthenope. He has authored or coauthored
more than 70 peer-reviewed journal articles. His

research interests include applied electromagnetics, especially electromagnetic
modeling, single and multipolarization sea surface scattering, radar polarime-
try, synthetic aperture radar sea oil slick and metallic target monitoring, spatial
resolution enhancement techniques, and global navigation satellite system—
reflectometry.

Claudio Estatico received the Laurea degree in
mathematics from the University of Genoa, Genoa,
Italy, and the Ph.D. degree in computational mathe-
matics and operation research from the University of
Milan, Milan, Italy, in 1995 and 2002, respectively.

He was a core participant of the special semester
program on inverse problems at the Institute for Pure
and Applied Mathematics, University of California
at Los Angeles, Los Angeles, CA, USA, in 2003.
He is currently an Associate Professor of numeri-
cal analysis with the Department of Mathematics,

University of Genoa. His research interests include numerical linear algebra
and inverse problems: iterative regularization methods in Hilbert and Banach
spaces, structured matrices and related preconditioners for linear and nonlinear
ill-posed problems, inverse scattering, and remote sensing.

Adriano Camps (Fellow, IEEE) was born in
Barcelona, Spain, in 1969.

In 1993, he joined the Electromagnetics and
Photonics Engineering Group, Department of Sig-
nal Theory and Communications, Polytechnic
University of Catalonia (UPC), Barcelona, as an
Assistant Professor, where he was an Associate
Professor in 1997 and has been a Full Professor since
2007. In 1999, he was on sabbatical leave at the
Microwave Remote Sensing Laboratory, University
of Massachusetts at Amherst, Amherst, MA, USA.

He has published over 189 articles in peer-reviewed journals, six book chap-
ters, and one book (860 pages), and more than 409 international conference
presentations, holds ten patents, and has advised 22 Ph.D. thesis students (+9
on-going), and supervised more than 125 final projects and M.Eng. theses. His
research interests are focused on microwave remote sensing, with a special
emphasis on microwave radiometry by aperture synthesis techniques (MIRAS
instrument onboard ESA’s SMOS mission), remote sensing using signals of
opportunity (GNSS-R), and nanosatellites as a tool to test innovative remote
sensors.

Dr. Camps was the President of the IEEE Geoscience and Remote Sensing
Society from 2017 to 2018.

Hyuk Park (Senior Member, IEEE) was born
in South Korea. He received the B.S. degree in
mechanical engineering from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 2001, and the M.S. and
Ph.D. degrees in information and mechatronics from
the Gwangju Institute of Science and Technology
(GIST), Gwangju, South Korea, in 2003 and 2009,
respectively.

In 2009, he joined the Remote Sensing Group,
Polytechnic University of Catalonia (UPC),

Barcelona, Spain, as a Post-Doctoral Researcher. In 2011, he was a
grant holder of the National Research Foundation funded by the Korean
Government. Since 2012, he has been working as a Research Associate
with a Juan de la Cierva grant funded by the Spanish Ministry of Economy
and Competitiveness. He is the winner of Chong-Hoon Cho Academic
Award 2019 in South Korea. He is currently working with the School of
Telecommunications and Aerospace Engineering, Castelldefels (EETAC-
UPC), as a Ramon y Cajal Fellow/tenure-track Assistant Professor. He is
also working with the Passive Remote Sensing Group, UPC, for satellite
remote sensing for microwave radiometry and global navigation satellite
systems reflectometry. His main research interest is in the area of remote
sensing, particularly passive microwave remote sensing, including system
design, modeling and simulation, image/data processing, and small satellite
applications.

Maurizio Migliaccio (Fellow, IEEE) was born in
Naples, Italy, in 1962. He received the Laurea degree
(Hons.) in electronic engineering from the Università
degli Studi di Naples Federico II, Naples, in 1987.

Since 1994, he has been teaching microwave
remote sensing. Since 2005, he has been a Full Pro-
fessor of electromagnetics with the Università degli
Studi di Naples Parthenope, Naples. Since 2013,
he has been an affiliated Full Professor with NOVA
Southeastern University, Fort Lauderdale, FL, USA.
He has authored or coauthored more than 200 peer-

reviewed journal articles on remote sensing and applied electromagnetics. His
research interest deals with applied electromagnetics.

Prof. Migliaccio was a member of the Italian Space Agency Scientific
Committee. He serves as an Associate Editor for the International Journal of
Remote Sensing and IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING.

Authorized licensed use limited to: University Parthenope of Napoli. Downloaded on May 19,2022 at 07:49:16 UTC from IEEE Xplore.  Restrictions apply. 


