52 research outputs found

    Analytical Comparison Among Oceanographic Instruments Operations

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Internet addiction and its psychosocial risks (depression, anxiety, stress and loneliness) among Iranian adolescents and young adults: a structural equation model in a cross-sectional study

    Get PDF
    Internet addiction has become an increasingly researched area in many Westernized countries. However, there has been little research in developing countries such as Iran, and when research has been conducted, it has typically utilized small samples. This study investigated the relationship of Internet addiction with stress, depression, anxiety, and loneliness in 1,052 Iranian adolescents and young adults. The participants were randomly selected to complete a battery of psychometrically validated instruments including the Internet Addiction Test, Depression Anxiety Stress Scale, and the Loneliness Scale. Structural equation modeling and Pearson correlation coefficients were used to determine the relationship between Internet addiction and psychological impairments (depression, anxiety, stress and loneliness). Pearson correlation, path analysis, multivariate analysis of variance (MANOVA), and t-tests were used to analyze the data. Results showed that Internet addiction is a predictor of stress, depression, anxiety, and loneliness. Findings further indicated that addictive Internet use is gender sensitive and that the risk of Internet addiction is higher in males than in females. The results showed that male Internet addicts differed significantly from females in terms of depression, anxiety, stress, and loneliness. The implications of these results are discussed

    Robust detection of translocations in lymphoma FFPE samples using targeted locus capture-based sequencing

    Get PDF
    Preservation of cancer biopsies by FFPE introduces DNA fragmentation, hindering analysis of rearrangements. Here the authors introduce FFPE Targeted Locus Capture for identification of translocations in preserved samples.In routine diagnostic pathology, cancer biopsies are preserved by formalin-fixed, paraffin-embedding (FFPE) procedures for examination of (intra-) cellular morphology. Such procedures inadvertently induce DNA fragmentation, which compromises sequencing-based analyses of chromosomal rearrangements. Yet, rearrangements drive many types of hematolymphoid malignancies and solid tumors, and their manifestation is instructive for diagnosis, prognosis, and treatment. Here, we present FFPE-targeted locus capture (FFPE-TLC) for targeted sequencing of proximity-ligation products formed in FFPE tissue blocks, and PLIER, a computational framework that allows automated identification and characterization of rearrangements involving selected, clinically relevant, loci. FFPE-TLC, blindly applied to 149 lymphoma and control FFPE samples, identifies the known and previously uncharacterized rearrangement partners. It outperforms fluorescence in situ hybridization (FISH) in sensitivity and specificity, and shows clear advantages over standard capture-NGS methods, finding rearrangements involving repetitive sequences which they typically miss. FFPE-TLC is therefore a powerful clinical diagnostics tool for accurate targeted rearrangement detection in FFPE specimens.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease

    MC-4C pipeline: test data

    No full text
    This is a reduced MC-4C dataset provided to be used as a test case for running MC-4C pipeline. The MC-4C pipeline can be freely downloaded from: https://github.com/aallahyar/mc4c_pyChanges compared to original upload: - Changed name of fastq file from "raw_BMaj-test.fastq" to "fq_BMaj-test.fastq.gz" - Fields are now separated by comma instead of semi-colo

    MC4C: Locus-Specific Enhancer Hubs And Architectural Loop Collisions Uncovered From Single Allele DNA Topologies

    No full text
    Chromatin folding is increasingly recognized as a regulator of genomic processes such as gene activity. Chromosome conformation capture (3C) methods have been developed to unravel genome topology through the analysis of pair-wise chromatin contacts and have identified many genes and regulatory sequences that, in populations of cells, are engaged in multiple DNA interactions. However, pair-wise methods cannot discern whether contacts occur simultaneously or in competition on the individual chromosome. We present a novel 3C method, Multi-Contact 4C (MC-4C), that applies Nanopore sequencing to study multi-way DNA conformations of tens of thousands individual alleles for distinction between cooperative, random and competing interactions. MC-4C can uncover previously missed structures in sub-populations of cells. It reveals unanticipated cooperative clustering between regulatory chromatin loops, anchored by enhancers and gene promoters, and CTCF and cohesin-bound architectural loops. For example, we show that the constituents of the active -globin super-enhancer cooperatively form an enhancer hub that can host two genes at a time. We also find cooperative interactions between further dispersed regulatory sequences of the active proto-cadherin locus. When applied to CTCF-bound domain boundaries, we find evidence that chromatin loops can collide, a process that is negatively regulated by the cohesin release factor WAPL. Loop collision is further pronounced in WAPL knockout cells, suggestive of a “cohesin traffic jam”. In summary, single molecule multi-contact analysis methods can reveal how the myriad of regulatory sequences spatially coordinate their actions on individual chromosomes. Insight into these single allele higher-order topological features will facilitate interpreting the consequences of natural and induced genetic variation and help uncovering the mechanisms shaping our genome

    MC-4C: Enhancer hubs and loop collisions identified from single-allele topologies

    No full text
    Chromatin folding is increasingly recognized as a regulator of genomic processes such as gene activity. Chromosome conformation capture (3C) methods have been developed to unravel genome topology through the analysis of pair-wise chromatin contacts and have identified many genes and regulatory sequences that, in populations of cells, are engaged in multiple DNA interactions. However, pair-wise methods cannot discern whether contacts occur simultaneously or in competition on the individual chromosome. We present a novel 3C method, Multi-Contact 4C (MC-4C), that applies Nanopore sequencing to study multi-way DNA conformations of tens of thousands individual alleles for distinction between cooperative, random and competing interactions. MC-4C can uncover previously missed structures in sub-populations of cells. It reveals unanticipated cooperative clustering between regulatory chromatin loops, anchored by enhancers and gene promoters, and CTCF and cohesin-bound architectural loops. For example, we show that the constituents of the active -globin super-enhancer cooperatively form an enhancer hub that can host two genes at a time. We also find cooperative interactions between further dispersed regulatory sequences of the active proto-cadherin locus. When applied to CTCF-bound domain boundaries, we find evidence that chromatin loops can collide, a process that is negatively regulated by the cohesin release factor WAPL. Loop collision is further pronounced in WAPL knockout cells, suggestive of a “cohesin traffic jam”. In summary, single molecule multi-contact analysis methods can reveal how the myriad of regulatory sequences spatially coordinate their actions on individual chromosomes. Insight into these single allele higher-order topological features will facilitate interpreting the consequences of natural and induced genetic variation and help uncovering the mechanisms shaping our genome

    MC4C: Locus-Specific Enhancer Hubs And Architectural Loop Collisions Uncovered From Single Allele DNA Topologies

    No full text
    Chromatin folding is increasingly recognized as a regulator of genomic processes such as gene activity. Chromosome conformation capture (3C) methods have been developed to unravel genome topology through the analysis of pair-wise chromatin contacts and have identified many genes and regulatory sequences that, in populations of cells, are engaged in multiple DNA interactions. However, pair-wise methods cannot discern whether contacts occur simultaneously or in competition on the individual chromosome. We present a novel 3C method, Multi-Contact 4C (MC-4C), that applies Nanopore sequencing to study multi-way DNA conformations of tens of thousands individual alleles for distinction between cooperative, random and competing interactions. MC-4C can uncover previously missed structures in sub-populations of cells. It reveals unanticipated cooperative clustering between regulatory chromatin loops, anchored by enhancers and gene promoters, and CTCF and cohesin-bound architectural loops. For example, we show that the constituents of the active -globin super-enhancer cooperatively form an enhancer hub that can host two genes at a time. We also find cooperative interactions between further dispersed regulatory sequences of the active proto-cadherin locus. When applied to CTCF-bound domain boundaries, we find evidence that chromatin loops can collide, a process that is negatively regulated by the cohesin release factor WAPL. Loop collision is further pronounced in WAPL knockout cells, suggestive of a “cohesin traffic jam”. In summary, single molecule multi-contact analysis methods can reveal how the myriad of regulatory sequences spatially coordinate their actions on individual chromosomes. Insight into these single allele higher-order topological features will facilitate interpreting the consequences of natural and induced genetic variation and help uncovering the mechanisms shaping our genome

    MC-4C pipeline: test data

    No full text
    This is a reduced MC-4C dataset provided to be used as a test case for running MC-4C pipeline. The MC-4C pipeline can be freely downloaded from: https://github.com/aallahyar/mc4c_pyChanges compared to original upload: - Changed name of fastq file from "raw_BMaj-test.fastq" to "fq_BMaj-test.fastq.gz" - Fields are now separated by comma instead of semi-colonTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    • …
    corecore