430 research outputs found

    Vortex density models for superconductivity and superfluidity

    Full text link
    We study some functionals that describe the density of vortex lines in superconductors subject to an applied magnetic field, and in Bose-Einstein condensates subject to rotational forcing, in quite general domains in 3 dimensions. These functionals are derived from more basic models via Gamma-convergence, here and in a companion paper. In our main results, we use these functionals to obtain descriptions of the critical applied magnetic field (for superconductors) and forcing (for Bose-Einstein), above which ground states exhibit nontrivial vorticity, as well as a characterization of the vortex density in terms of a non local vector-valued generalization of the classical obstacle problem.Comment: 34 page

    Vortex lattice stability in the SO(5) model

    Full text link
    We study the energetics of superconducting vortices in the SO(5) model for high-TcT_c materials proposed by Zhang. We show that for a wide range of parameters normally corresponding to type II superconductivity, the free energy per unit flux \FF(m) of a vortex with mm flux quanta is a decreasing function of mm, provided the doping is close to its critical value. This implies that the Abrikosov lattice is unstable, a behaviour typical of type I superconductors. For dopings far from the critical value, \FF(m) can become very flat, indicating a less rigid vortex lattice, which would melt at a lower temperature than expected for a BCS superconductor.Comment: 4 pp, revtex, 5 figure

    Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

    Get PDF
    Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. A good method for premise selection in complex mathematical libraries is the application of machine learning to large corpora of proofs. This work develops learning-based premise selection in two ways. First, a newly available minimal dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed,extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50% improvement on the benchmark over the Vampire/SInE state-of-the-art system for automated reasoning in large theories.Comment: 26 page

    Positive solutions to indefinite Neumann problems when the weight has positive average

    Full text link
    We deal with positive solutions for the Neumann boundary value problem associated with the scalar second order ODE u"+q(t)g(u)=0,t[0,T], u" + q(t)g(u) = 0, \quad t \in [0, T], where g:[0,+[Rg: [0, +\infty[\, \to \mathbb{R} is positive on ]0,+[\,]0, +\infty[\, and q(t)q(t) is an indefinite weight. Complementary to previous investigations in the case 0Tq(t)<0\int_0^T q(t) < 0, we provide existence results for a suitable class of weights having (small) positive mean, when g(x)<0g'(x) < 0 at infinity. Our proof relies on a shooting argument for a suitable equivalent planar system of the type x=y,y=h(x)y2+q(t), x' = y, \qquad y' = h(x)y^2 + q(t), with h(x)h(x) a continuous function defined on the whole real line.Comment: 17 pages, 3 figure

    Mining State-Based Models from Proof Corpora

    Full text link
    Interactive theorem provers have been used extensively to reason about various software/hardware systems and mathematical theorems. The key challenge when using an interactive prover is finding a suitable sequence of proof steps that will lead to a successful proof requires a significant amount of human intervention. This paper presents an automated technique that takes as input examples of successful proofs and infers an Extended Finite State Machine as output. This can in turn be used to generate proofs of new conjectures. Our preliminary experiments show that the inferred models are generally accurate (contain few false-positive sequences) and that representing existing proofs in such a way can be very useful when guiding new ones.Comment: To Appear at Conferences on Intelligent Computer Mathematics 201

    Vortex Rings in Fast Rotating Bose-Einstein Condensates

    Full text link
    When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex phase appears, that is the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii energy on the unit disc. In particular we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold there are vortices in the condensate. We prove that they gather along a particular circle on which they are evenly distributed. This is done by providing new upper and lower bounds to the GP energy.Comment: to appear in Archive of Rational Mechanics and Analysi
    corecore