92 research outputs found

    A threshold phenomenon for embeddings of H0mH^m_0 into Orlicz spaces

    Full text link
    We consider a sequence of positive smooth critical points of the Adams-Moser-Trudinger embedding of H0mH^m_0 into Orlicz spaces. We study its concentration-compactness behavior and show that if the sequence is not precompact, then the liminf of the H0mH^m_0-norms of the functions is greater than or equal to a positive geometric constant.Comment: 14 Page

    A theory of L1L^1-dissipative solvers for scalar conservation laws with discontinuous flux

    Full text link
    We propose a general framework for the study of L1L^1 contractive semigroups of solutions to conservation laws with discontinuous flux. Developing the ideas of a number of preceding works we claim that the whole admissibility issue is reduced to the selection of a family of "elementary solutions", which are certain piecewise constant stationary weak solutions. We refer to such a family as a "germ". It is well known that (CL) admits many different L1L^1 contractive semigroups, some of which reflects different physical applications. We revisit a number of the existing admissibility (or entropy) conditions and identify the germs that underly these conditions. We devote specific attention to the anishing viscosity" germ, which is a way to express the "Γ\Gamma-condition" of Diehl. For any given germ, we formulate "germ-based" admissibility conditions in the form of a trace condition on the flux discontinuity line x=0x=0 (in the spirit of Vol'pert) and in the form of a family of global entropy inequalities (following Kruzhkov and Carrillo). We characterize those germs that lead to the L1L^1-contraction property for the associated admissible solutions. Our approach offers a streamlined and unifying perspective on many of the known entropy conditions, making it possible to recover earlier uniqueness results under weaker conditions than before, and to provide new results for other less studied problems. Several strategies for proving the existence of admissible solutions are discussed, and existence results are given for fluxes satisfying some additional conditions. These are based on convergence results either for the vanishing viscosity method (with standard viscosity or with specific viscosities "adapted" to the choice of a germ), or for specific germ-adapted finite volume schemes

    Asymptotic behaviour of a semilinear elliptic system with a large exponent

    Full text link
    Consider the problem \begin{eqnarray*} -\Delta u &=& v^{\frac 2{N-2}},\quad v>0\quad {in}\quad \Omega, -\Delta v &=& u^{p},\:\:\:\quad u>0\quad {in}\quad \Omega, u&=&v\:\:=\:\:0 \quad {on}\quad \partial \Omega, \end{eqnarray*} where Ω\Omega is a bounded convex domain in RN,\R^N, N>2,N>2, with smooth boundary Ω.\partial \Omega. We study the asymptotic behaviour of the least energy solutions of this system as p.p\to \infty. We show that the solution remain bounded for pp large and have one or two peaks away form the boundary. When one peak occurs we characterize its location.Comment: 16 pages, submmited for publicatio

    Anti symmetric solutions of non-linear laminar flow between parallel permeable disks

    Get PDF
    The equations describing similarity solutions for flow between infinite parallel permeable disks with equal rates of suction or injection at the walls is derived using the stream function. This leads to a fourth order non-linear Ordinary Differential Equation. This equation is shown to admit anti-symmetric solutions using the moving plane method

    Existence of solutions to a higher dimensional mean-field equation on manifolds

    Full text link
    For m1m\geq 1 we prove an existence result for the equation (Δg)mu+λ=λe2muMe2mudμg(-\Delta_g)^m u+\lambda=\lambda\frac{e^{2mu}}{\int_M e^{2mu}d\mu_g} on a closed Riemannian manifold (M,g)(M,g) of dimension 2m2m for certain values of λ\lambda.Comment: 15 Page

    A Computer-Assisted Uniqueness Proof for a Semilinear Elliptic Boundary Value Problem

    Full text link
    A wide variety of articles, starting with the famous paper (Gidas, Ni and Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the uniqueness question for the semilinear elliptic boundary value problem -{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of {\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian eigenvalue. So far, this question was settled in the case of {\Omega} being a ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to this uniqueness question, which indeed provided a proof in the case {\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here, by a significant reduction of the complexity, we will prove uniqueness for the case p=3

    Positive Least Energy Solutions and Phase Separation for Coupled Schrodinger Equations with Critical Exponent: Higher Dimensional Case

    Full text link
    We study the following nonlinear Schr\"{o}dinger system which is related to Bose-Einstein condensate: {displaymath} {cases}-\Delta u +\la_1 u = \mu_1 u^{2^\ast-1}+\beta u^{\frac{2^\ast}{2}-1}v^{\frac{2^\ast}{2}}, \quad x\in \Omega, -\Delta v +\la_2 v =\mu_2 v^{2^\ast-1}+\beta v^{\frac{2^\ast}{2}-1} u^{\frac{2^\ast}{2}}, \quad x\in \om, u\ge 0, v\ge 0 \,\,\hbox{in \om},\quad u=v=0 \,\,\hbox{on \partial\om}.{cases}{displaymath} Here \om\subset \R^N is a smooth bounded domain, 2:=2NN22^\ast:=\frac{2N}{N-2} is the Sobolev critical exponent, -\la_1(\om)0 and β0\beta\neq 0, where \lambda_1(\om) is the first eigenvalue of Δ-\Delta with the Dirichlet boundary condition. When \bb=0, this is just the well-known Brezis-Nirenberg problem. The special case N=4 was studied by the authors in (Arch. Ration. Mech. Anal. 205: 515-551, 2012). In this paper we consider {\it the higher dimensional case N5N\ge 5}. It is interesting that we can prove the existence of a positive least energy solution (u_\bb, v_\bb) {\it for any β0\beta\neq 0} (which can not hold in the special case N=4). We also study the limit behavior of (u_\bb, v_\bb) as β\beta\to -\infty and phase separation is expected. In particular, u_\bb-v_\bb will converge to {\it sign-changing solutions} of the Brezis-Nirenberg problem, provided N6N\ge 6. In case \la_1=\la_2, the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case N=4.Comment: 48 pages. This is a revised version of arXiv:1209.2522v1 [math.AP

    Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions

    Full text link
    We introduce an iterative method for computing the first eigenpair (λp,ep)(\lambda_{p},e_{p}) for the pp-Laplacian operator with homogeneous Dirichlet data as the limit of (μq,uq)(\mu_{q,}u_{q}) as qpq\rightarrow p^{-}, where uqu_{q} is the positive solution of the sublinear Lane-Emden equation Δpuq=μquqq1-\Delta_{p}u_{q}=\mu_{q}u_{q}^{q-1} with same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of uqu_{q} to epe_{p} is in the C1C^{1}-norm and the rate of convergence of μq\mu_{q} to λp\lambda_{p} is at least O(pq)O(p-q). Numerical evidence is presented.Comment: Section 5 was rewritten. Jed Brown was added as autho

    Sharp constants in weighted trace inequalities on Riemannian manifolds

    Full text link
    We establish some sharp weighted trace inequalities W^{1,2}(\rho^{1-2\sigma}, M)\hookrightarrow L^{\frac{2n}{n-2\sigma}}(\pa M) on n+1n+1 dimensional compact smooth manifolds with smooth boundaries, where ρ\rho is a defining function of MM and σ(0,1)\sigma\in (0,1). This is stimulated by some recent work on fractional (conformal) Laplacians and related problems in conformal geometry, and also motivated by a conjecture of Aubin.Comment: 34 page
    corecore