75 research outputs found

    Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy

    Get PDF
    International audienceApplication of cavity ring down (CRD) spectrometry for measuring the optical properties of pure and mixed laboratory-generated aerosols is presented. The extinction coefficient (?ext), extinction cross section (?ext) and extinction efficiency (Qext) were measured for polystyrene spheres (PSS), ammonium sulphate ((NH4)2(SO4), sodium chloride (NaCl), glutaric acid (GA), and Rhodamine-590 aerosols. The refractive indices of the different aerosols were retrieved by comparing the measured extinction efficiency of each aerosol type to the extinction predicted by Mie theory. Aerosols composed of sodium chloride and glutaric acid in different mixing ratios were used as model for mixed aerosols of two non-absorbing materials, and their extinction and complex refractive index were derived. Aerosols composed of Rhodamine-590 and ammonium sulphate in different mixing ratios were used as model for mixing of absorbing and non-absorbing species, and their optical properties were derived. The refractive indices of the mixed aerosols were also calculated by various optical mixing rules. We found that for non-absorbing mixtures, the linear rule, Maxwell-Garnett rule, and extended effective medium approximation (EEMA), give comparable results, with the linear mixing rule giving a slightly better fit than the others. Overall, calculations for the mixed aerosols are not as good as for single component aerosols. For absorbing mixtures, the differences between the refractive indices calculated using the mixing rules and those retrieved by CRD are generally higher

    Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry

    No full text
    International audienceIn this study, we measure the extinction efficiency at 532 nm of absorbing aerosol particles coated with a non-absorbing solid and liquid organic shell with coating thickness varying between 5 and 100 nm using cavity ring down aerosol spectrometry. For this purpose, we use nigrosin, an organic black dye, as a model absorbing core and two non-absorbing organic substances as shells, glutaric acid (GA) and Di-Ethyl-Hexyl-Sebacate (DEHS). The measured behavior of the coated particles is consistent with Mie calculations of core-shell particles. Errors between measured and calculated values for nigrosin coated with GA and DEHS are between 0.5% and 10.5% and between 0.5% and 9%, respectively. However, it is evident that the calculations are in better agreement with the measured results for thinner coatings. Possible reasons for these discrepancies are discussed

    Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    Get PDF
    One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA (differential mobility analyzer) are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (<i>f</i>RH<sub>ext</sub>(%RH, Dry)) is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements. <br><br> We found a weak linear dependence or no dependence of <i>f</i>RH(%RH, Dry) with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1.15 the volume weighted mixing rule assumption needs to be taken with caution as the imaginary part of the complex RI can be underestimated

    Watson–Crick and Sugar-Edge Base Pairing of Cytosine in the Gas Phase: UV and Infrared Spectra of Cytosine·2-Pyridone

    Get PDF
    While keto-amino cytosine is the dominant species in aqueous solution, spectroscopic studies in molecular beams and in noble gas matrices show that other cytosine tautomers prevail in apolar environments. Each of these offers two or three H-bonding sites (Watson–Crick, wobble, sugar-edge). The mass- and isomer-specific S1 ← S0 vibronic spectra of cytosine·2-pyridone (Cyt·2PY) and 1-methylcytosine·2PY are measured using UV laser resonant two-photon ionization (R2PI), UV/UV depletion, and IR depletion spectroscopy. The UV spectra of the Watson–Crick and sugar-edge isomers of Cyt·2PY are separated using UV/UV spectral hole-burning. Five different isomers of Cyt·2PY are observed in a supersonic beam. We show that the Watson–Crick and sugar-edge dimers of keto-amino cytosine with 2PY are the most abundant in the beam, although keto-amino-cytosine is only the third most abundant tautomer in the gas phase. We identify the different isomers by combining three different diagnostic tools: (1) methylation of the cytosine N1–H group prevents formation of both the sugar-edge and wobble isomers and gives the Watson–Crick isomer exclusively. (2) The calculated ground state binding and dissociation energies, relative gas-phase abundances, excitation and the ionization energies are in agreement with the assignment of the dominant Cyt·2PY isomers to the Watson–Crick and sugar-edge complexes of keto-amino cytosine. (3) The comparison of calculated ground state vibrational frequencies to the experimental IR spectra in the carbonyl stretch and NH/OH/CH stretch ranges strengthen this identification

    Retrieval of Aerosol Complex Refractive Index by Combining Cavity Ring Down Aerosol Spectrometer Measurements with Full Size Distribution Information

    No full text
    Cavity ring down aerosol extinction measurements are combined with size distribution measurements to provide a multiparameter basis for the retrieval of the aerosol complex refractive index. We show that two distinct size distributions of small particles (< 300 nm) suffice to obtain robust convergence of the Mie theory fit of the extinction function. Experiments are performed both for purely scattering and for absorbing aerosol. Thus this method provides a perspective to use cavity ring down aerosol spectroscopy in field and laboratory measurements that often suffer from low particle concentrations and a lack of large particles
    corecore