667 research outputs found

    The isolation and characterisation of the wheat molecular ZIPper I homologue, TaZYP1

    Get PDF
    Extent: 13p.Background: The synaptonemal complex (SC) is a proteinaceous tripartite structure used to hold homologous chromosomes together during the early stages of meiosis. The yeast ZIP1 and its homologues in other species have previously been characterised as the transverse filament protein of the synaptonemal complex. Proper installation of ZYP1 along chromosomes has been shown to be dependent on the axial element-associated protein, ASY1 in Arabidopsis. Results: Here we report the isolation of the wheat (Triticum aestivum) ZYP1 (TaZYP1) and its expression profile (during and post-meiosis) in wild-type, the ph1b deletion mutant as well as in Taasy1 RNAi knock-down mutants. TaZYP1 has a putative DNA-binding S/TPXX motif in its C-terminal region and we provide evidence that TaZYP1 interacts non-preferentially with both single- and double-stranded DNA in vitro. 3-dimensional dual immunofluorescence localisation assays conducted with an antibody raised against TaZYP1 show that TaZYP1 interacts with chromatin during meiosis but does not co-localise to regions of chromatin where TaASY1 is present. The TaZYP1 signal lengthens into regions of chromatin where TaASY1 has been removed in wild-type but this appears delayed in the ph1b mutant. The localisation profile of TaZYP1 in four Taasy1 knock-down mutants is similar to wild-type but TaZYP1 signal intensity appears weaker and more diffused. Conclusions: In contrast to previous studies performed on plant species where ZYP1 signal is sandwiched by ASY1 signal located on both axial elements of the SC, data from the 3-dimensional dual immunofluorescence localisation assays conducted in this study show that TaZYP1 signal only lengthens into regions of chromatin after TaASY1 signal is being unloaded. However, the observation that TaZYP1 loading appears delayed in both the ph1b and Taasy1 mutants suggests that TaASY1 may still be essential for TaZYP1 to play a role in SC formation during meiosis. These data further suggest that the temporal installation of ZYP1 onto pairing homologous chromosomes in wheat is different to that of other plant species and highlights the need to study this synaptonemal complex protein on a species to species basis.Kelvin HP Khoo, Amanda J Able and Jason A Abl

    Poor Homologous Synapsis 1 Interacts with Chromatin but Does Not Colocalise with ASYnapsis 1 during Early Meiosis in Bread Wheat

    Get PDF
    Chromosome pairing, synapsis, and DNA recombination are three key processes that occur during early meiosis. A previous study of Poor Homologous Synapsis 1 (PHS1) in maize suggested that PHS1 has a role in coordinating these three processes. Here we report the isolation of wheat (Triticum aestivum) PHS1 (TaPHS1), and its expression profile during and after meiosis. While the TaPHS1 protein has sequence similarity to other plant PHS1/PHS1-like proteins, it also possesses a unique region of oligopeptide repeat units. We show that TaPHS1 interacts with both single- and double-stranded DNA in vitro and provide evidence of the protein region that imparts the DNA-binding ability. Immunolocalisation data from assays conducted using antisera raised against TaPHS1 show that TaPHS1 associates with chromatin during early meiosis, with the signal persisting beyond chromosome synapsis. Furthermore, TaPHS1 does not appear to colocalise with the asynapsis protein (TaASY1) suggesting that these proteins are probably independently coordinated. Significantly, the data from the DNA-binding assays and 3-dimensional immunolocalisation of TaPHS1 during early meiosis indicates that TaPHS1 interacts with DNA, a function not previously observed in either the Arabidopsis or maize PHS1 homologues. As such, these results provide new insight into the function of PHS1 during early meiosis in bread wheat

    Transitions in the morphological features, habitat use, and diet of young-of-the-year goosefish (Lophius americanus)

    Get PDF
    This study was designed to improve our understanding of transitions in the early life history and the distribution, habitat use, and diets for young-of-the-year (YOY) goosefish (Lophius americanus) and, as a result, their role in northeastern U.S. continental shelf ecosystems. Pelagic juveniles (>12 to ca. 50 mm total length [TL]) were distributed over most portions of the continental shelf in the Middle Atlantic Bight, Georges Bank, and into the Gulf of Maine. Most individuals settled by 50−85 mm TL and reached approximately 60−120 mm TL by one year of age. Pelagic YOY fed on chaetognaths, hyperiid amphipods, calanoid copepods, and ostracods, and benthic YOY had a varied diet of fishes and benthic crustaceans. Goosefish are widely scattered on the continental shelf in the Middle Atlantic Bight during their early life history and once settled, are habitat generalists, and thus play a role in many continental shelf habi

    Comparative Transcriptomics Reveals 129 Transcripts That Are Temporally Regulated during Anther Development and Meiotic Progression in Both Bread Wheat (Triticum aestivum) and Rice (Oryza sativa)

    Get PDF
    Meiosis is a specialised type of cell division in sexually reproducing organisms that generates genetic diversity and prevents chromosome doubling in successive generations. The last decade has seen forward and reverse genetic approaches identifying many genes in the plant kingdom which highlight similarities and differences in the mechanics of meiosis between taxonomic kingdoms. We present here a high throughput in silico analysis, using bread wheat and rice, which has generated a list of 129 transcripts containing genes with meiotic roles and some which are currently unknown

    STAT5-Interacting proteins: A synopsis of proteins that regulate STAT5 activity

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B with cytokine/hormone receptors, nuclear receptors, transcriptional regulators, proto-oncogenes, kinases, and phosphatases all contribute to modulating STAT5 activity. Among these STAT5 interacting proteins, some serve as coactivators or corepressors to regulate STAT5 transcriptional activity and some proteins can interact with STAT5 to enhance or repress STAT5 signaling. In addition, a few STAT5 interacting proteins have been identified as positive regulators of STAT5 that alter serine and tyrosine phosphorylation of STAT5 while other proteins have been identified as negative regulators of STAT5 via dephosphorylation. This review article will discuss how STAT5 activity is modulated by proteins that physically interact with STAT5

    Migration and Invasion of Brain Tumors

    Full text link
    Recent advances in molecular biology have led to new insights in the development, growth and infiltrative behaviors of primary brain tumors (Demuth and Berens, 2004; Huse and Holland, 2010; Johnson et al., 2009; Kanu et al., 2009). These tumors are derived from various brain cell lineages and have been historically classified on the basis of morphological and, more recently, immunohistochemical features with less emphasis on their underlying molecular pathogenesis (Huse and Holland, 2010). The detailed molecular characterization of brain tumors has laid the groundwork for augmentation of standard treatment with patient-specific designed targeted therapies (Johnson et al., 2009; Kanu et al., 2009). Nevertheless, these tumors are extremely aggressive in their infiltration of brain tissue (Altman et al., 2007; Hensel et al., 1998; Yamahara et al., 2010), as well as in their metastasis outside of brain (Algra et al., 1992). Further, it now appears that the physiological conditions of the normal brain itself constitute a biological environment conducive to the uncontrolled dissemination of primary tumors (Bellail et al., 2004; Sontheimer, 2004). This review surveys the latest research on the invasive behavior of two major types of primary brain tumors: gliomas and medulloblastomas - the most common tumors diagnosed within adult and pediatric brain, respectively (Rickert and Paulus, 2001). The material has been divided into five sections: i) Characteristics of malignant brain tumors; ii) Mechanisms of tumor cell migration; iii) Models for the study of brain tumor invasion in vivo and ex vivo; iv) Models for the study of brain tumor invasion in vitro; and v) Future prospects of anti-invasive brain tumor therapy

    Migration and Invasion of Brain Tumors

    Get PDF

    Characterisation of ethylene pathway components in non-climacteric capsicum

    Get PDF
    Background: Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the ‘Breaker stage’. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. Results: The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. Conclusions: ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may also exist in non-climacteric ripening as evidenced by the up-regulation of CaACO4 during ripening onset despite being negatively regulated by ethylene exposure. However, some level of ethylene perception may still be needed to induce ripening especially during the Breaker stage. A model of capsicum ripening is also presented to illustrate the probable role of ethylene in this non-climacteric fruit.Wan M Aizat, Jason A Able, James CR Stangoulis and Amanda J Abl

    Loss of DBC1 (CCAR2) affects TNFα-induced lipolysis and Glut4 gene expression in murine adipocytes

    Get PDF
    © 2018 Society for Endocrinology Published by Bioscientifica Ltd. STAT5A (signal transducer and activator of transcription 5A) is a transcription factor that plays a role in adipocyte development and function. In this study, we report DBC1 (deleted in breast cancer 1 - also known as CCAR2) as a novel STAT5A-interacting protein. DBC1 has been primarily studied in tumor cells, but there is evidence that loss of this protein may promote metabolic health in mice. Currently, the functions of DBC1 in mature adipocytes are largely unknown. Using immunoprecipitation and immunoblotting techniques, we confirmed that there is an association between endogenous STAT5A and DBC1 proteins under physiological conditions in the adipocyte nucleus that is not dependent upon STAT5A tyrosine phosphorylation. We used siRNA to knockdown DBC1 in 3T3-L1 adipocytes to determine the impact on STAT5A activity, adipocyte gene expression and TNFα (tumor necrosis factor α)-regulated lipolysis. The loss of DBC1 did not affect the expression of several STAT5A target genes including Socs3, Cish, Bcl6, Socs2 and Igf1. However, we did observe decreased levels of TNFα-induced glycerol and free fatty acids released from adipocytes with reduced DBC1 expression. In addition, DBC1-knockdown adipocytes had increased Glut4 expression. In summary, DBC1 can associate with STAT5A in adipocyte nucleus, but it does not appear to impact regulation of STAT5A target genes. Loss of adipocyte DBC1 modestly increases Glut4 gene expression and reduces TNFα-induced lipolysis. These observations are consistent with in vivo observations that show loss of DBC1 promotes metabolic health in mice
    corecore