284 research outputs found

    Algebraic Multi-Grid solver for lattice QCD on Exascale hardware: Intel Xeon Phi

    Get PDF
    In this white paper we describe work done on the development of an efficient iterative solver for lattice QCD based on the Algebraic Multi-Grid approach (AMG) within the tmLQCD software suite. This development is aimed at modern computer architectures that will be relevant for the Exa-scale regime, namely multicore processors together with the Intel Xeon Phi coprocessor. Because of the complexity of this solver, implementation turned out to take a considerable effort. Fine tuning and optimization will require more work and will be the subject of further investigation. However, the work presented here provides a necessary initial step in this direction

    The Scalar Sector and the Eta -> 3 Pi Problem

    Full text link
    First, recent work on light scalar mesons, which is of possible interest in connection with the strong coupling region of QCD is briefly discussed. Then a very short highlighting of a paper concerned with an application to the eta -> 3 pi problem is presented.Comment: 7 pages LaTeX, 4 eps figures, talk at SCGT02 conference at Nagoy

    Thermal performance enhancement of evacuated tube solar collector using MWCNT, Al2O3, and hybrid MWCNT/ Al2O3nanofluids

    Get PDF
    Nanofluids have numerous applications in heat transference procedures due to their exceptional thermal characteristics. The most desirable parameter to enhance the solar collector's performance is the enhancement of the convective heat transfer coefficient between the working fluid tubes and the absorber. As a result, nanofluids have gained prominence as working fluids in solar thermal systems. The trendsetting review reveals that mostly the nanofluids in solar collectors are based on water employing nanoparticles of Al2O3, TiO2, SiO2, and CuO. Besides, nanoparticle concentration is a challenging factor in using nanofluids. In this research, under controlled conditions, the working fluids multi-wall carbon nanotube, Aluminum Oxide, and hybrid MWCNT/Al2O3 50:50% were experimentally examined for the thermal efficiency enhancement of the evacuated tube solar collector. For each type of nanofluid, four volume concentration percentages (0.5%, 0.025%, 0.01%, and 0.005%) were examined along with three distinct mass flow rates. According to the findings, using hybrid MWCNT/Al2O3 50:50% delivers an efficiency boost of about 20% overusing Al2O3, as was previously reported. Finally, it was found that the utilization of 0.5% MWCNT/water nanofluid at 3.5 L/m can enhance the ETSC's energy and exergy efficiency to reach 73.5% and 51% respectively while reaching approximately 60% and 44% for AL2O3, and 69% and 38% for hybrid MWCNT/Al2O3 (50:50%) under the same test conditions

    Deflation for inversion with multiple right-hand sides in QCD

    Get PDF
    Most calculations in lattice Quantum Chromodynamics (QCD) involve the solution of a series of linear systems of equations with exceedingly large matrices and a large number of right hand sides. Iterative methods for these problems can be sped up significantly if we deflate approximations of appropriate invariant spaces from the initial guesses. Recently we have developed eigCG, a modification of the Conjugate Gradient (CG) method, which while solving a linear system can reuse a window of the CG vectors to compute eigenvectors almost as accurately as the Lanczos method. The number of approximate eigenvectors can increase as more systems are solved. In this paper we review some of the characteristics of eigCG and show how it helps remove the critical slowdown in QCD calculations. Moreover, we study scaling with lattice volume and an extension of the technique to nonsymmetric problems
    • …
    corecore