22 research outputs found

    Temporal Processing of Vibratory Communication Signals at the Level of Ascending Interneurons in Nezara viridula (Hemiptera: Pentatomidae)

    Get PDF
    During mating, males and females of N. viridula (Heteroptera: Pentatomidae) produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID) combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms) and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition

    The Male-Produced Aggregation-Sex Pheromone of the Cerambycid Beetle Plagionotus detritus ssp. detritus

    No full text
    The number of longhorn beetles with confirmed aggregation-sex pheromones has increased rapidly in recent years. However, the species that have been studied most intensively are pests, whereas much less is known about the pheromones of longhorn beetles that are rare or threatened. We studied the cerambycid beetle Plagionotus detritus ssp. detritus with the goal of confirming the presence and composition of an aggregation-sex pheromone. This species has suffered widespread population decline due to habitat loss in Western Europe, and it is now considered threatened and near extinction in several countries. Beetles from a captive breeding program in Sweden were used for headspace sampling. Gas chromatography-mass spectrometry revealed that collections from males contained large quantities of two compounds, identified as (R)-3-hydroxy-2-hexanone (major component) and (S)-2-hydroxy-3-octanone (minor component), in addition to smaller quantities of 2,3-hexanedione and 2,3-octanedione. None of the compounds was present in collections from females. When tested singly in a field bioassay, racemic 3-hydroxy-2-hexanone and 2-hydroxy-3-octanone were not attractive to P. detritus, whereas a 5:1 blend elicited significant attraction. Both compounds are known as components of the pheromones of conspecific beetles, but, to our knowledge, this is the first cerambycid shown to use two compounds with different chain lengths, in which the positions of the hydroxyl and carbonyl functions are interchanged between the two. The pheromone has potential as an efficient tool to detect and monitor populations of P. detritus, and may also be useful in more complex studies on the ecology and conservation requirements of this species
    corecore