16 research outputs found

    Two new species of the Fusarium solani species complex isolated from compost and hibiscus (Hibiscus sp.)

    No full text
    © 2018 Springer International Publishing AG, part of Springer Nature Two new species in the Fusarium solani species complex (FSSC) are described and introduced. The new taxa are represented by German isolates CBS 142481 and CBS 142480 collected from commercial yard waste compost and vascular tissue of a wilting branch of hibiscus, respectively. The phylogenetic relationships of the collected strains to one another and within the FSSC were evaluated based on DNA sequences of 6 gene loci. Due to the limited sequence data available for reference strains in GenBank, however, a multi-gene phylogenetic analysis included partial sequences for the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), translation elongation factor 1-alpha (tef1) and the RNA polymerase II second largest subunit (rpb2). Morphological and molecular phylogenetic data independently showed that these strains are distinct populations of the FSSC, nested within Clade 3. Thus, we introduce Fusarium stercicola and Fusarium witzenhausenense as novel species in the complex. In addition, 19 plant species of 7 legume genera were evaluated for their potential to host the newly described taxa. Eighteen plant species were successfully colonized, with 6 and 9 of these being symptomatic hosts for F. stercicola and F. witzenhausenense, respectively. As plants of the family Fabaceae are very distant to the originally sourced material from which the new taxa wer e recovered, our results suggest that F. stercicola and F. witzenhausenense are not host-specific and are ecologically fit to sustain stable populations in variety of habitats

    No to Neocosmospora: Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus Fusarium

    No full text
    Contains fulltext : 225984.pdf (publisher's version ) (Open Access)This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available

    No to <i>Neocosmospora</i>: Phylogenomic and Practical Reasons for Continued Inclusion of the <i>Fusarium solani</i> Species Complex in the Genus <i>Fusarium</i>

    No full text
    ABSTRACT This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium. Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora. In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium. There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available

    A Joint Meeting of the EUCARPIA Section, Organic and Low-Input Agriculture, ECO-PB, LIVESEED, INSUSFAR, DIVERSify, HealthyMinorCereals, ReMIX, and Wheatamix University of Kassel, 19th–21st February 2018, Witzenhausen, Germany ; Abstract Booklet

    No full text
    This Symposium was financially supported by EUCARPIA and organised in collaboration with ECO-PB

    No to Neocosmospora: Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus Fusarium.

    Get PDF
    This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available
    corecore