351 research outputs found
Role of magnesium in carbon partitioning and alleviating photooxidative damage
Magnesium (Mg) deficiency exerts a major influence on the partitioning of
drymatter and carbohydrates between shoots and roots. One of the very early
reactions of plants to Mg deficiency stress is themarked increase in the shootto-
root dry weight ratio, which is associated with a massive accumulation of
carbohydrates in source leaves, especially of sucrose and starch. These higher
concentrations of carbohydrates in Mg-deficient leaves together with the
accompanying increase in shoot-to-root dry weight ratio are indicative of
a severe impairment in phloem export of photoassimilates from source
leaves. Studies with common bean and sugar beet plants have shown that
Mg plays a fundamental role in phloem loading of sucrose. At a very early
stage of Mg deficiency, phloem export of sucrose is severely impaired, an
effect that occurs before any noticeable changes in shoot growth, Chl
concentration or photosynthetic activity. These findings suggest that accumulation
of carbohydrates in Mg-deficient leaves is caused directly by Mg
deficiency stress and not as a consequence of reduced sink activity. The role
of Mg in the phloem-loading process seems to be specific; resupplying Mg for
12 or 24 h to Mg-deficient plants resulted in a very rapid recovery of sucrose
export. It appears that the massive accumulation of carbohydrates and related
impairment in photosynthetic CO2 fixation in Mg-deficient leaves cause an
over-reduction in the photosynthetic electron transport chain that potentiates
the generation of highly reactive O2 species (ROS). Plants respond to Mg
deficiency stress by marked increases in antioxidative capacity of leaves,
especially under high light intensity, suggesting that ROS generation is
stimulated by Mg deficiency in chloroplasts. Accordingly, it has been found
that Mg-deficient plants are very susceptible to high light intensity. Exposure
of Mg-deficient plants to high light intensity rapidly induced leaf chlorosis
and necrosis, an outcome that was effectively delayed by partial shading of
the leaf blade, although the Mg concentrations in different parts of the leaf
blade were unaffected by shading. The results indicate that photooxidative
damage contributes to development of leaf chlorosis under Mg deficiency,
suggesting that plants under high-light conditions have a higher physiological
requirement for Mg. Maintenance of a high Mg nutritional status of plants is,
thus, essential in the avoidance of ROS generation, which occurs at the
expense of inhibited phloem export of sugars and impairment of CO2
fixation, particularly under high-light conditions
Effects of long-range disorder and electronic interactions on the optical properties of graphene quantum dots
We theoretically investigate the effects of long-range disorder and
electron-electron interactions on the optical properties of hexagonal armchair
graphene quantum dots consisting of up to 10806 atoms. The numerical
calculations are performed using a combination of tight-binding, mean-field
Hubbard and configuration interaction methods. Imperfections in the graphene
quantum dots are modelled as a long-range random potential landscape, giving
rise to electron-hole puddles. We show that, when the electron-hole puddles are
present, tight-binding method gives a poor description of the low-energy
absorption spectra compared to meanfield and configuration interaction
calculation results. As the size of the graphene quantum dot is increased, the
universal optical conductivity limit can be observed in the absorption
spectrum. When disorder is present, calculated absorption spectrum approaches
the experimental results for isolated monolayer of graphene sheet
Iterative actions of normal operators
Let be a normal operator in a Hilbert space , and let
be a countable set of vectors. We investigate
the relations between , , and that makes the system of
iterations complete, Bessel, a
basis, or a frame for . The problem is motivated by the dynamical
sampling problem and is connected to several topics in functional analysis,
including, frame theory and spectral theory. It also has relations to topics in
applied harmonic analysis including, wavelet theory and time-frequency
analysis.Comment: 14 pages, 0 figure
Protecting the operation from general and residual errors by continuous dynamical decoupling
We study the occurrence of errors in a continuously decoupled two-qubit state
during a quantum operation under decoherence. We consider a
realization of this quantum gate based on the Heisenberg exchange interaction,
which alone suffices for achieving universal quantum computation. Furthermore,
we introduce a continuous-dynamical-decoupling scheme that commutes with the
Heisenberg Hamiltonian to protect it from the amplitude damping and dephasing
errors caused by the system-environment interaction. We consider two
error-protection settings. One protects the qubits from both amplitude damping
and dephasing errors. The other features the amplitude damping as a residual
error and protects the qubits from dephasing errors only. In both settings, we
investigate the interaction of qubits with common and independent environments
separately. We study how errors affect the entanglement and fidelity for
different environmental spectral densities.Comment: Extended version of arXiv:1005.1666. To appear in PR
Quantum Correlations and Coherence in Spin-1 Heisenberg Chains
We explore quantum and classical correlations along with coherence in the
ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model
and the one-dimensional bilinear biquadratic model, with the techniques of
density matrix renormalization group theory. Exploiting the tools of quantum
information theory, that is, by studying quantum discord, quantum mutual
information and three recently introduced coherence measures in the reduced
density matrix of two nearest neighbor spins in the bulk, we investigate the
quantum phase transitions and special symmetry points in these models. We point
out the relative strengths and weaknesses of correlation and coherence measures
as figures of merit to witness the quantum phase transitions and symmetry
points in the considered spin-1 Heisenberg chains. In particular, we
demonstrate that as none of the studied measures can detect the infinite order
Kosterlitz-Thouless transition in the XXZ model, they appear to be able to
signal the existence of the same type of transition in the biliear biquadratic
model. However, we argue that what is actually detected by the measures here is
the SU(3) symmetry point of the model rather than the infinite order quantum
phase transition. Moreover, we show in the XXZ model that examining even single
site coherence can be sufficient to spotlight the second-order phase transition
and the SU(2) symmetry point.Comment: 8 pages. 5 figure
Effects of random atomic disorder on the magnetic stability of graphene nanoribbons with zigzag edges
We investigate the effects of randomly distributed atomic defects on the
magnetic properties of graphene nanoribbons with zigzag edges using an extended
mean-field Hubbard model. For a balanced defect distribution among the
sublattices of the honeycomb lattice in the bulk region of the ribbon, the
ground state antiferromagnetism of the edge states remains unaffected. By
analyzing the excitation spectrum, we show that while the antiferromagnetic
ground state is susceptible to single spin flip excitations from edge states to
magnetic defect states at low defect concentrations, it's overall stability is
enhanced with respect to the ferromagnetic phase.Comment: 5 pages, 4 figure
Quantum correlations in a few-atom spin-1 Bose-Hubbard model
We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement
- …